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likelihood)
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Human Cytomegalovirus CMV /
Palindromes

e member of Herpes virus family; potentially

life-threatening; incidence varies 30-80%:; in

immune-depressed causes pneumonia, neurological
disorders, gastro-intestinal disease, mental
retardation and deafness

pattern investigation:

complementary palindromes - sequence of letters
that reads in reverse as the complement of the
forward sequence (e.g., GGGCATGCCC); cluster of
palindromes may indicate the origin of replication
which may help finding vaccines or drugs.




e data:
CMV DNA is 229,354 letters long (Hemophilus
influenzae-1.8 million, human-3 billion); the longest

palindrome is 18 base pairs; computer search
algorithms indicate the presence of 296 palindromes
10-18 pairs long; shorter can occur too frequently
just by chance and are ignored.

switch to R and show the data; more info at

WWW.r-project.org

departures from an uniform random scatter of
palindromes across the DNA. how do we find
clusters of palindromes? how do we determine
whether a cluster is just a chance occurrence or a




potential replication site?

— look for structure: examine locations, the counts,

and the spacings between palindromes in

nonoverlapping regions of the DNA; simulate

random scatter and compare visually; use
graphical methods to examine the spacings
between consecutive palindromes and sums of

consecutive pairs, triplets, etc spacings.

does the interval with the greatest number of
palindromes indicate a potential origin of
replication? tight cluster of a few palindromes
could easily go undetected if the regions

examined are too large; if the regions are too




small, a cluster of palindromes may be split
between adjacent intervals and not appear as a
high-count interval. the counts for shorter
regions will be more variable than those for

longer regions.

e THEORY — Distributions

— Homogeneous Poisson Process

x describes events arriving along a time scale

(phone calls, deaths, radiactive deacay, etc)

* the underlying rate (\) at which points, called
hits, occur doesn’t change with location
(homogeneity)

x the number of points falling in separate




regions are independent

no two points can land exactly the same place
P(k points in a unit interval) = %wmlyw A is
the rate of hits per unit area

adopting the poisson process implies:
palindromes are scattered randomly and
uniformily acroos the DNA; the number of
palindromes in any small piece of DNA is
independent of the number of palindromes in
another, nonoverlaping piece; the chance that

one tiny piece of DNA has a palindrome in it

is the same for all tiny pieces of DNA.

— back to the example:




x+ estimate \ by the method of moments

= \ = wmkw = 5.16 per 4000 base pairs (could

also be estimated by maximum likelihood; in

this case yields the same result)

goodness of fit (switch to R)

locations and the uniform distribution

a poisson process on a region can be viewed as
a process that first generates a random
number, which is number of hits, and then
generates locations for the hits according to
the uniform distribution. (switch to R)
spacings and the exponential and gamma

distributions




P(the distance between the first and second
hits> t) = P(no hits in an interval of length
f)= e~

= the distance between successive hits follows
the exponential distribution with paramenter
A; the distance between hits that are two
apart follows a gamma distribution with
parameters 2 and A; the exponential is special

case of gamma with 1, A; the XM 1s also a

special case of the gamma with w and w

*+ maximum number of hits




P(maximum count over m
nonoverlaping intervals > k) =

= 1 — P( maximum count < k)

= 1 — P( all interval counts < k)

= 1 — |P( first interval count < k)|™

k—1
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e More Distributions
— Binomial: if p is the probability of getting a ‘1’
and 1 — p is the probability of getting a ‘0’, the
probability that £ out of NV tries yield a ‘1’ is




P(k ‘1’s out of N) =

h A h ber of
where = (N=R)&])’ the number of ways

k
of choosing k objects from V.

Gaussian: f(u) = ,\% exp(—u?/2)

Multinomial: is a generalization of the binomial

to the case where the expirements have K
independent outcomes with probabilities
O;,e=1,--- K

ex: rolling a die




— Dirichlet: density over probabilities

K K

Do) =Z () ] 67710 (> 6:i—1],
1=1

i=1
o = a7 - - - are constants specifying the
distribution and the 0 < 6; <1 sum up to 1.
the multinomial is a distribution over its
exponents n; whereas the dirichelet is a
distribution over the numbers 6; that are

exponentiated; the two distributions are said to

be conjugate distriburions.

Z can be expressed in terms of the gamma




function

K .
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the gamma is a generalization of the factorial

function to real numbers

I'n)=(n—-1)! neNT

'(z+1)=2al(z) z€R"

example: loaded die with probability parameters
0 =60.,---,0s and sampling probabilities vectors
0 trom a dirichelet parameterised by

a=ay, a6 « =10, =2 = both

distributions produce fair dice in average but a




loaded die is more likely under the second set of
parameters (greater variability).

— Gamma: conjugate to the poisson; appropriate
for modeling the probabilities of rates
(analogously to the multinomial/dirichelet
conjugate)

@IQ&HQIHQQ

g(z,o,f8) =

0
T (a) O<z,a,0< o0

— Extreme value: modeling the breaking-point of a
chain (weakest link), assessing the significance of
a maximum score from a set of alignments.

e Inference

— Maximum Likelihood




infer parameters § = {6;} for model M from a
set of data D

oML = g = max P(DI0, M)

likelihood IS NOT a probability distribution or
density; interesting properties like consistency;

gives poor results when the data are scanty (3

rolls of a die)— switch to R

Posterior Probability Distribution
P(D|0, M)P(0|M)
P(D|M)

P(0|D, M) =

sample from the posterior; choose the maximum
a posteriori probability (MAP); take the




posterior mean estimator (PME)

gMAP max P(D|6, M) P(6]M)

pP ME \ 0P (0|n)do

— Examples of Bayes’ theorem
occasionally dishonest casino: 99% fair, 1%
loaded (P(six)=1/2)
pick a die at random and roll 3 times; suppose

you get 3 sixes; P(Dy,aded|d sixes) 7




Nuﬁuwom&@& |3 sixes) =

P(3 sixes| Digaded) P (Dloaded)
P(3 sixes)

(0.53)(0.01)
(0.53)(0.01) + (1/6)3(0.99)

= 0.21

— Data Augmentation
Expectation Maximization (EM): maximum
likelihood with missing data;
Markov Chain Monte Carlo: Gibbs - sample
from the distribution obtained by keeping all
variables fixed except one, i.e. the conditional

distribution (bugs/winbugs; see




http://www.mrc-

bsu.cam.ac.uk/bugs/winbugs/contents.shtml




Pairwise Alignment

e insertion/deletion/substitution: (1)what sorts of
alignment should be considered; (2)the scoring
system used to rank alignment; (3)the algorithm to
find optimal scoring alignments; (4)the statistical
methods to evaluate the significance of an alignment

SCOore.

e random model (R)

2 J




match model (M)

Pa,b are givem by a substitution matrix (i.e.
BLOSUMS50) which makes a statement about the
probability of observing ab pairs in real alignments.

PlxylM) _ _IliPsy; I1 Pz;y;
P(z,y|R) Es Az, _IT dy, ; Az, dy;

S = 3 s(wi,yi), 5(a,b) = log ( 222)
s(a,b) is the log likelihood ratio of the residue pair

(a,b) ocurring as an aligned pair, as opposed to an
unligned pair




e given an alignment score, how do we decide if it is a
biologically meaningful alignment giving evidence
for a homology or, just the best alignment between

two entirely unrelated sequences? P(M|x,y) vs
P(z,y|M)

P(z.y|M)P(M
P(M|z,y) = A W_A&UW\VA )

P(x,y|M)P(M)
P(z,y|M)P(M)+P(z,y|R)P(R)
P(z,y|M)P(M)/P(z,y|R)P(R)
1+P(z,y|M)P(M)/P(xz,y|R)P(R)

P(M) _ P(z,y|M)
let S" =5 + log AEE v 5 = log A P eyl v

mwm\
— wAz_mﬁg@V — H|_|®m\

fixed prior does not take into consideration length




of search. the more you search, the more you find
talse positives; set the prior odds ratio in inverse

proportion to the number of sequences in the
database N.

classical approach
work out the distribution of the maximum of N

match scores to independent random sequences

(Extreme Value Dist); if small, the observation is

considered significant.




Markov and Hidden Markov Models in a
Nutshell

e markov models: describes the probability of one
residue following another residue (one state

following another state), the transition probabilities:

as¢ = P(x; =t|z;—1 = s) = build scores based on

estimates of transition probabilities

e hmm: fair vs loaded dice




1/6
1/6
1/6
1/6
1/6

1/6

the markov chain is given by the unseen sequence of
fair and loaded dice that emit the observed states

according to the emission probabilities in of each

state.

ex: CpG islands; CG is chemichally modified by

1/10
1/10
1/10
1/10
1/10
1/2




methylation mutating into T; CpG nucleotides are
rare except when the methylation is supressed
giving rise to CpG islands around promoters or
'start’ regions; given a short stretch how should we

decide if it comes from a CpG island and how we
find them?

e phylogenetic trees

e bootstrap (switch to R)




