PROTEIN PATTERN DATABASES

PROTEIN SEQUENCES

BASIC INFORMATION COMES FROM SEQUENCE

- Multiple alignments of related sequences- can build up consensus sequences of known families, domains, motifs or sites.
- Pattern
- Matrix
- Profile
- HMM

COMMON PROTEIN PATTERN DATABASES

- Prosite patterns
- Prosite profiles
- Pfam
- SMART
- Prints
- TIGRFAMs
- BLOCKS

Alignment databases

- ProDom
- PIR-ALN
- ProtoMap
- Domo
- ProClass

PROSITE Patterns and profiles

- http://www.expasy.ch/prosite/
- Building a pattern:
- a.) from literature -test against SP, update if necessary

b.) new patterns:

Start with reviewed protein family, known functional sites:

- enzyme catalytic site,
- attachment site eg heme,
- metal ion binding site
- cysteines for disulphide bonds,
- molecule (GTP) or protein binding site

PROSITE PATTERNS

Pattern is given as regular expression:

 $[AC]-x-V-x(4)-\{ED\}$

ala/cys-any-val-any-any-any-(any except glu or asp)

PROSITE PROFILES

- Not confined to small regions, cover whole protein or domain and has more info on allowed aa at each position
- Start with multiple seq alignment -uses a symbol comparison table to convert residue frequency distributions into weights
- Result- table of position-specific amino acid weights and gap costs- calculate a similarity score for any alignment between a profile and a sequence, or parts of a profile and a sequence
- Tested on SP, refined. Begin as prefiles then integrated

PROSITE is a database of protein families and domains. It consists of biologically significant sites, patterns and profiles that help to reliably identify to which known protein family (if any) a new sequence belongs [More details / References / Disclaimer].

Release 16.37, of 05-May-2001 (contains 1089 documentation entries that describe 1474 different patterns, rules and profiles/matrices).

Access to PROSITE

- <u>by description</u>
- by entry name or accession number (PSxxxx or PDOCxxxx number)
- by author
- by citation
- by full text search
- SRS Sequence Retrieval System

Documents

- PROSITE user manual
- List of PROSITE documentation entries
- How to obtain PROSITE
- Document describing the syntax of profiles in PROSITE
- List of programs that make use of PROSITE
- List of abbreviations for journals cited
- List of on-line experts
- The optimal way to develop patterns

Tools for PROSITE

- <u>ScanProsite</u> Scan a sequence against PROSITE or a pattern against SWISS-PROT
- <u>ProfileScan</u> Scan a sequence against the profile entries in PROSITE
- Other pattern and profile search tools

Services

Downloading PROSITE by FTP

Access to servers offering related services

- InterPro Integrated Resource of ProteinDomains and Functional Sites
- BLOCKS from the Henikoff group at the FHCRC in Seattle (USA)
- DOMO from Jérôme Gracy at Infobiogen (France)
- Pfam from the Sanger Centre in Hinxton (UK) or from Washington University (USA)
- PRINTS from Terri Attwood at University of Manchester (UK)
- <u>ProDom</u> from Daniel Kahn at the INRA in Toulouse (France)

Search in PROSITE for: kinase

(Release 16.37, of 05-May-2001)

Please choose one of the following entries:

- PDOC00004 cAMP- and cGMP-dependent protein kinase phosphorylation site
- <u>PDOC00005</u> Protein kinase C phosphorylation site
- PDOC00006 Casein kinase II phosphorylation site
- PDOC00007 Tyrosine kinase phosphorylation site
- <u>PDOC00370</u> Hexokinases signature
- PDOC00099 Galactokinase signature
- PDOC00545 GHMP kinases putative ATP-binding domain
- <u>PDOC00336</u> Phosphofructokinase signature
- <u>PDOC00504</u> pfkB family of carbohydrate kinases signatures
- PDOC00490 Phosphoribulokinase signature
- PDOC00524 Thymidine kinase cellular-type signature
- <u>PDOC00408</u> FGGY family of carbohydrate kinases signatures
- PDOC00100 Protein kinases signatures and profile
- <u>PDOC01049</u> MAP kinase signature
- PDOC00845 Casein kinase II regulatory subunit signature
- <u>PDOC00101</u> Pyruvate kinase active site signature
- PDOC00868 Shikimate kinase signature
- PDOC00820 Prokaryotic diacylglycerol kinase signature
- PDOC00710 Phosphatidylinositol 3- and 4-kinases signatures and profile
- PDOC00826 Acetate and butyrate kinases family signatures
- PDOC00102 Phosphoglycerate kinase signature
- PDOC00289 Aspartokinase signature
- PDOC00701 Glutamate 5-kinase signature
- <u>PDOC00104</u> A denylate kinase signature
- PDOC00409 Nucleoside diphosphate kinases active site
- PDOC00670 Guanylate kinase signature and profile
- PDOC01034 Thymidylate kinase signature
- PDOC00631 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase signature
- PDOC00421 Phosphoenolpyruvate carboxykinase (GTP) signature
- PDOC00460 Phosphoenolpyruvate carboxykinase (ATP) signature
- PDOC00212 Receptor tyrosine kinase class II signature
- PDOC00213 Receptor tyrosine kinase class III signature
- PDOC00629 Receptor tyrosine kinase class V signatures
- PDOC00728 Cyclin-dependent kinases regulatory subunits signatures
- PDOC00979 Glucokinase regulatory protein family signature

NiceSite view of PROSITE: PDOC00101 (documentation)

Pyruvate kinase active site signature

PROSITE cross-reference(s)	
PS00110; PYRUVATE_KINASE	
Documentation	
Pyruvate kinase (EC 2.7.1.40) (PK) the conversion of phosphoenolpyr phosphorylation of ADP to ATP. PK for its activity. PK is found in are four, tissues specific, isozy heart, and brain), and M2 (early f two isozymes: PK-I (gene pykF) and be tetramers of identical subunits As a signature pattern for PK we lysine residue which seems to be t interconversion of pyruvate and implicated in the binding of the m	<pre>[1] catalyzes the final step in glycolysis, nuvate to pyruvate with the concomitant I requires both magnesium and potassium ions all living organisms. In vertebrates there maes: L (liver), R (red cells), M1 (muscle, tetal tissues). In Escherichia coli there are N PK-II (gene pykA). All PK isozymes seem to s of about 500 amino acid residues. selected a conserved region that includes a the acid/base catalyst responsible for the enolpyruvate, and a glutamic acid residue tagnesium ion.</pre>
Description of pattern(s) and/or profile(s)	
Consensus pattern	[LIVAC]-x-[LIVM](2)-[SAPCV]-K-[LIV]-E-[NKRST]-x-[DEQHS]- [GSTA]-[LIVM] [K is the active site residue] [E is a magnesium ligand]
Sequences known to belong to this class detected by the pattern	ALL.
Other sequence(s) detected in SWISS-PROT	1.
Last update	
July 1999 / Pattern and text revised.	
References	
[1] Muirhead H. Biochem. Soc. Trans. 18:193-196(1990).	
Copyright	
This PROSITE entry is copyright by the Swiss I statement is not removed. Usage by and for comm	nstitute of Bioinformatics (SIB). There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this nercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ or email to license@isb-sib.ch/announce/ or email to license@isb-sib.ch/announce/ or email to license@isb-sib.ch/announce/ or email to http://www.isb-sib.ch/announce/ or email to license@isb-sib.ch/announce/ or email to http://www.isb-sib.ch/announce/ or email to http://www.is

View entry in original PROSITE document format

PROSITE: PDOC00101 (documentation)

View entry in NiceSite format

the conversion of phosphoenolpyruvate to pyruvate with the concomitant phosphorylation of ADP to ATP. PK requires both magnesium and potassium ions for its activity. PK is found in all living organisms. In vertebrates there are four, tissues specific, isozymes: L (liver), R (red cells), M1 (muscle, heart, and brain), and M2 (early fetal tissues). In Escherichia coli there are two isozymes: PK-I (gene pykF) and PK-II (gene pykA). All PK isozymes seem to be tetramers of identical subunits of about 500 amino acid residues.

As a signature pattern for PK we selected a conserved region that includes a lysine residue which seems to be the acid/base catalyst responsible for the interconversion of pyruvate and enolpyruvate, and a glutamic acid residue implicated in the binding of the magnesium ion.

-Consensus pattern: [LIVAC]-x-[LIVM](2)-[SAPCV]-K-[LIV]-E-[NKRST]-x-[DEQHS]-[GSTA]-[LIVM] [K is the active site residue] [E is a magnesium ligand] -Sequences known to belong to this class detected by the pattern: ALL. -Other sequence(s) detected in SWISS-PROT: 1.

-Last update: July 1999 / Pattern and text revised.

[1] Muirhead H. Biochem. Soc. Trans. 18:193-196(1990).

| This PROSITE entry is copyright by the Swiss Institute of Bioinformatics | | (SIB). There are no restrictions on its use by non-profit institutions as | | long as its content is in no way modified and this statement is not | | removed. Usage by and for commercial entities requires a license agreement | | (See http://www.isb-sib.ch/announce/ or email to license@isb-sib.ch).

European Bioinform

(END)

EMBL

NiceSite View of PROSITE: **PS00110**

General information abo	out the entry		
Entry name	PYRUVATE_KINASE		
Accession number	PS00110		
Entry type	PATTERN		
Date	APR-1990 (CREATED); JUL-1999 (DATA UPDATE); JUL-1999 (INFO UPDATE).		
PROSITE documentation	PDOC00101		
Name and characterizat	ion of the entry		
Description	Pyruvate kinase active site signature.		
Pattern	LIVAC1-x-ILIVMI(2)-ISAPCV1-K-ILIV1-E-INKRST1-x-IDEOHS1-IGSTA1-I	LIVMI	
Numerical results	[[].[].[].[].[].[].[].[].[].[].[].[].[].[].[].[]		
 Total number of I Number of hits or Number of hits or Number of false I Number of known Number of known Number of partia Precision (true hits) Recall (true hits) 	hits in SWISS-PROT: 57 hits in 57 different sequences n proteins that are known to belong to the set under consideration: 56 hits n proteins that could potentially belong to the set under consideration: 0 h hits (on unrelated proteins): 1 hits in 1 different sequences n missed hits: 2 l sequences which belong to the set under consideration, but which are not ts / (true hits + false positives)): 98.25 % (true hits + false negatives)): 96.55 %	in 56 different sequences its in 0 different sequences t hit by the pattern or profile because they are partial (fragment) sequences: 9	
Comments	(and 120 1200 1200 10)	KPYK_MYLPN (P/8031), KPYK_MYLLU (UU6134), KPYK_SUHPU (U10208),	
 Taxonomic range Maximum known 'Interesting' site 'Interesting' site 	: Archaebacteria, Eukaryotes, Prokaryotes (Bacteria) number of repetitions of the pattern in a single protein: 1 in the pattern: 5,active_site in the pattern: 7,magnesium	KPYK_VARLI (P30614), KPYR_CANFA (029536), KPYR_HUMAN (P30613), KPYR_MOUSE (P53657), KPYR_RAT (P12928) False negative hits (sequences which belong to the set under consideration, but which	ch have not been picked up by the pattern or profile):
Cross-references		KPYK_CHLTR (<u>P94685</u>), KPYK_LACDE (<u>P34038</u>)	
	True positive hits: KPY1_ECOLI (P14178), KPY1_FELCA (P11979), KPY1_HUMAN KPY1_RABIT (P11974), KPY1_RAT (P11980), KPY1_SALTY KPY1_SYNY3 (055863), KPY1_TRYBB (P30615), KPY1_SALTY KPY2_SYNY3 (055863), KPY1_TRYBB (P30615), KPY1_YEAST KPY2_ECOLI (P21599), KPY2_HUMAN (P14786), KPY2_MOUSE KPY2_RABIT (018919), KPY2_RAT (P11981), KPY2_SYNY3 KPY2_TRYBB (P30616), KPY2_YEAST (P52489), KPY3_AGRVI KPY4_AGRVI (044473), KPYA_RICCO (043117), KPYA_TOBAC KPY2_ARATH (065595), KPYC_SOLTU (P22200), KPYC_SOYBN KPY2_TOBAC (042954), KPYG RICCO (P55964), KPYG TOBAC	 'Potential' hits (sequences that belong to the set under consideration, but which were 'fingerprint' (pattern or profile) is not yet available in the data bank (partial sequent KPY1_PHOLE (030853), KPY1_SPICI (P19680), KPYK_CANAL (P46614), KPYK_CLOAB (008309), KPYK_CLOPA (P81344), KPYK_CLOPE (046289), KPYK_LEIBR (004668), KPYK_THEAC (P32044), KPYK_THELI (056301) False positive hits (sequences which do not belong to the set under consideration): DNAB_HAEIN (P45256) 	re not picked up because the region(s) that are used as a ce)):
	KPYK_ASPNG (Q12669), KPYK_BACLI (P51181), KPYK_BACPY	1PKY; 1PYK; 1PKM; 1AOF; 1PKN; 1A5U; 1A3W; 1A3X; 1PKL;	
SWISS-PROT	KPYK_BACST (002499), KPYK_BACSU (P80885), KPYK_BORBU (0. KPYK_CHICK (P00548), KPYK_CORGL (046078), KPYK_DROME (040078), KPYK_EINTE (044006), KPYK_EMENI (P22360), KPYK_HAEIN (P. KPYK_LACLA (007637), KPYK_EMENI (P22360), KPYK_METEX (0100000000000000000000000000000000000	62619), 43924), 05118), 94939), 10208), 92122),	

Pfam

Riom

•http://www.sanger.ac.uk/Software/Pfam/index.shtml

•Database of HMMs for domains and families

•HMMs are built from HMMER2 (Bayesian statistical models), can use two modes ls or fs, all domains should be matched with ls

•Use Bits scores, thresholds are chosen manually using E-value from extreme fit distribution

•Two parts to Pfam:

- ⇒ PfamA -manually curated
- ⇒ PfamB -automatic clustering of rest of SPTR from ProDom using Domainer

•Use -looking at domain structure of SPTR protein or new sequence

Pfam Protein families database of alignments and HMMs Home Keyword search Protein search DNA search Browse Pfam Taxonomy search Help

Version 6.2, April 2001, 2773 families

Pfam is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains. For more information on Pfam, on using this site, or on the changes between Pfam releases 5 and 6, click <u>here</u>.

Interactive WWW access to Pfam

- <u>KEYWORD SEARCH</u> Query Pfam by keywords.
- PROTEIN SEARCH Find Pfam domain matches in your protein sequence.
- DNA SEARCH Find Pfam domain matches in your DNA sequence.
- BROWSE PFAM View Pfam annotation and alignments.
- TAXONOMY SEARCH Find Pfam domain matches by organism.
- More information and help on Pfam

Pfam mirror servers worldwide

- Sanger Centre (UK)
- St. Louis (USA)
- <u>Karolinska Institutet (Sweden)</u>
- Institut National de la Recherche Agronomique (France)

Query Pfam text

Results for query 'kinase'

Matches to documentation in the selected databases with links back to Pfam

Family	Description
6PF2K	6-phosphofructo-2-kinase
<u>aakinase</u>	Amino acid kinase family
Acetate_kinase	Acetokinase family
adenylatekinase	A denylate kinase
Anti_proliferat	BTG1 family
APH	Aminoglycoside phosphotransferase
APS_kinase	A denylylsulfate kinase
arf	ADP-ribosylation factor family
ATP-gua_Ptrans	ATP:guanido phosphotransferase, C-terminal catalytic domain
ATP-gua_PtransN	ATP:guanido phosphotransferase, N-terminal domain
<u>C2</u>	C2 domain
<u>cadherin</u>	Cadherin domain
<u>CDI</u>	Cyclin-dependent kinase inhibitor
<u>CheW</u>	CheW-like domain
<u>Choline_kinase</u>	Choline/ethanolamine kinase
<u>CK_II_beta</u>	Casein kinase II regulatory subunit
<u>CKS</u>	Cyclin-dependent kinase regulatory subunit
<u>CNH</u>	CNH domain
<u>CobU</u>	Cobinamide kinase / cobinamide phosphate guanyltransferase
<u>cyclin</u>	Cyclin
<u>Cytidylate_kin</u>	Cytidylate kinase
DAG_PE-bind	Phorbol esters/diacylglycerol binding domain (C1 domain)
DAGK_prokar	Prokaryotic diacylglycerol kinase
DAGKa	Diacylglycerol kinase accessory domain (presumed)
DAGKe	Diacylglycerol kinase catalytic domain (presumed)
<u>Daki</u>	Dakl domain
<u>death</u>	Death domain
<u>dNK</u>	Deoxynucleoside kinase
DSPc	Dual specificity phosphatase, catalytic domain

EMBL European Bioinformatics

Results for UserSeq

Trusted matches - domains scoring higher than the gathering threshold

Domain	Start	End	Bits	Evalue	Alignment
<u>efhand</u>	114	142	18.10	0.21	Align
<u>efhand</u>	159	187	22.40	0.011	Alien
DAG PE-bind	206	253	73.30	5.2e-18	Align
DAG PE-bind	270	319	47.10	3.8e-10	Align
DAGKc	376	500	236.20	4.7e-67	Align
<u>DAGKa</u>	520	701	406.60	2.3e-118	Align

Matches to Pfam-B

Domain	Start	End	Evalue	Alignment
<u>Pfam-B 4919</u>	1	108	1.4e-54	Align
Pfam-B 6031	270	334	9e-06	Align
Pfam-B 5578	702	734	4e-14	Align

efhand 114-142 efhand 159-187 DAG_PE-bind 206-253 DAG_PE-bind 270-319 DAGKc 376-500 DAGKa 520-701

	Alignments of Pfam-A domains to HMMs		
	Format for fetching alignments to seed Hypertext linked to swisspfam 💌		
	Alignment of <u>efhand</u> vs UserSeq/114-142		
	->elkeaFkefDkDgDGkIsfeEfkaalkkl<- +l+ Fk++D+D++G ++ E +++ ++ UserSeq 114 KLEFTFKLYDTDRNGILDSSEVDKIILQM 142		
	Align to seed		
	Alignment of <u>efhand</u> vs UserSeq/159-187		
	->elkeaFkefDkDgDGkIsfeEfkaalkkl<- l+e++ke+D Dg+G +s E+++a +++ UserSeq 159 ILQEMMKEIDYDGSGSVSQAEWVRAGATT 187		
	Align to seed		
	Alignment of <u>DAG_PE-bind</u> vs UserSeq/206-253		
	*->HrFkrttfyksptfCdhCgellwglakQGlkCsnCglnvHkrChekV H+++++f ++p +C++C++ ++ + kQGl C C+++vH++C++k+ UserSeq 206 HMWRPKRF-PRPVYCNLCESSIGLG-KQGLSCNLCKYTVHDQCAMKA 250		
	ptnC<-* +C UserSeq 251 L-PC 253		
	Align to seed		
	Alignment of <u>DAG_PE-bind</u> vs UserSeq/270-319		
	*->HrFkrttfyksptfCdhCgellwgla.kQGlkCsnCglnvHkrChek H ++r + ++Cd C++ ++ +++ +Gl+C +C+l +H+ C+++ UserSeq 270 HVWVRGGCESGRCDRCQKKIRIYHsLTGLHCVWCHLEIHDDCLQA 314		
EMBL European Bioinforma	VptnC<-* V +C UserSeq 315 VGHEC 319		

DAG_PE-bind

<	Accession number: PF00130 Phorbol esters/diacylglycerol binding domain (Cl domain) -!- This domain is also known as the Protein kinase C conserved region 1 (Cl) domain.
Figure 1: 1 thn calcium-binding protein nmr structure of a protein kinase c-g phorbol-binding domain, minimized average structure	INTERPRO description (entry IPR002219) Diacylglycerol (DAG) is an important second messenger. Phorbol esters (PE) are analogues of DAG and potent tumor promoters that cause a variety of physiological changes when administered to both cells and tissues. DAG activates a family of serine/threonine protein kinases, collectively known as protein kinase C (PKC). Phorbol esters can directly stimulate PKC. The N-terminal region of PKC, known as C1, has been shown to bind PE and DAG in a phospholipid and zinc-dependent fashion. The C1 region contains one or two copies (depending on the isozyme of PKC) of a cysteine-rick domain about 50 amino-acid residues long and essential for DAG/PE-binding. The DAG/PE-binding domain binds two zinc ions; the ligands of these metal ions are probably the six cysteines and two histidines that are conserved in this domain.
For additional annotation, see the PROSITE document	PD0C00379 [Expasy SRS-UK SRS-USA]

To contribute to the annotation for this family (and win a T-shirt), click \underline{here}

Alignment	Domain organisation		
Seed (40) O Full (343)	Seed (40) O Full (343)		
Format Hypertext in Pfam format	As a Graphic As a Tree		
Get alignment	Zoom 0.5 pixels/aa. Dotstrap tree View Graphic NIFAS Applet		
Further alignment options <u>here</u>	To find out about the NIFAS tree-viewer, click <u>here</u>		
Help relating to Pfam alignments <u>here</u>			

Species Distribution

Literature References

[1] Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM; Science. 1991;253:407-414.

Database References

PDB You can find out how to set up Rasmol <u>here</u>	1tbn ; 102; 151; PDB 2 Plann Rasmol (unix) Chime (pc) CATH-PDBSUM SCOP-UK SCOP-USA
PROSITE	PD0C00379 [Expasy SRS-UK SRS-USA]
PRINTS	PR00008
INTERPRO	IPR002219
PFAMB The following Pfam-B families contain sequences that according to Prodom are members of this Pfam-A family.	PB000018 PB006031 PB014315 PB044288 PB058467

Pfam specific information

Author of entry	Bateman A
Alignment method of seed	Manual
Source of seed members	Prosite
Gathering cutoff	10 3
Trusted cutoff	10.40 4.40
Noise cutoff	9.40 16.00
Build method of HMM	hmmbuild HMM SEED hmmcalibrateseed 0 HMM

Additional features of Pfam

- PfamA has about 65% coverage of SPTR, rest is covered by PfamB
- Can search directly with DNA -Wise2 package
- Can view taxonomic range of each entry
- Can view proteins with similar domain structure and view of all family members
- Links to other databases including 3D structure
- Note: No 2 PfamA HMMs should overlap

SMART- Simple Modular Architecture Research Tool

- http://smart.embl-heidelberg.de/
- Relies on hand curated multiple sequence alignments of representative family members from PSI-BLAST- builds HMMs-used to search database for more seq for alignment- iterative searching until no more homologues detected
- Store Ep (highest per protein E-value of T) and En (lowest per protein E-value of N) values
- Will predict domain homologue with sequence if
 - Ep < E-value <En and E-value <1.0

SMART Software version 3.3 released. Check "What's new" page for details and send us your comments and suggestions!

Sequence analysis	Architecture analysis	
You may use either the swissprot/sptrembl sequence identifier (ID) / accession number (\underline{ACC}) or the protein sequence itself to request the smart service	You can search for proteins with combinations of <u>specific domains</u> in different species or taxonomic ranges.	
Sequence ID or ACC Sequence Sequence Sequence SMART Reset HIMMER searches of the SMART database occur by default. You may also find: Outlier homologues and homologues of known structure PFAM domains signal peptides and GPI anchors	Domain selection Example: TyrK: AND SH3 AND NOT SH2 Taxonomic selection Select a taxonomic range via the selection box or type it into the text box below Select: All Example: Dictyostelium discoideum Portiera Architecture SMART	
<u>internal repeats</u>	Alert If you want to be automatically informed each time a new protein with a defined domain composition is deposited in databases, please use ' <u>alert SMART</u> ' (this facility is also available following an architecture analysis query)	
Domains detected by SMART		
You can search for keywords in the domain annotation		
Search Keywords		

* $\underline{\mathbf{Browse}}$ the database of all available domains in the SMART database

• See a list of recent domain changes

Domains within the query sequence of 345 residues

Mouse over domain / undefined region to see the limits; click on it to go to further annotation; right-click to save whole protein as PNG image

Transmembrane segments as predicted by the <u>TMHMM2</u> program (**IN**), coiled coil regions determined by the <u>Coils2</u> program (**IN**) and Segments of low compositional complexity, determined by the <u>SEG</u> program (**IN**)

Architecture analysis

<u>Display</u> all proteins with similar domain <u>organisation</u>. <u>Display</u> all proteins with similar domain <u>composition</u>.

The SMART diagram above represents a summary of the results shown below. Domains with scores less significant than established cutoffs are not shown in the diagram. Features are also not shown when two or more occupy the same piece of sequence; the priority for display is given by SMART > PFAM > PROSPERO repeats > Signal peptide > Transmembrane > Coiled coil > Low complexity. In either case, features not shown in the above diagram are marked 'hidden'

Confidently predicted domains, repeats, motifs and features:

name	begin	end	E-value
ANX	58	110	8.44e-22
ANX	130	182	8.70e-24
ANX	214	266	7.08e-15
<u>ANX</u>	289	341	2.46e-23

The i	The following proteins have the same domain <u>organisation</u> as your query protein.								
You	You can display the domain architecture of <u>ALL (136)</u> or selected (below) proteins.								
Tog	To get an overview of the species distribution of these proteins, see the TAX BREAK								
	Protein	Description	Species						
	ANX2_HUMAN	ANNEXIN II (LIPOCORTIN II) (CALPACTIN I HEAVY CHAIN) (CHROMOBINDIN 8)(P36) (PROTEIN I) (PLACENTAL ANTICOAGULANT PROTEIN IV) (PAP-IV).	Homo sapiens						
	ANX9_HUMAN	ANNEXIN A9 (ANNEXIN 31) (ANNEXIN XXXI).	Homo sapiens						
	ANX1_RABIT	ANNEXIN I (LIPOCORTIN I) (CALPACTIN II) (CHROMOBINDIN 9) (P35)(PHOSPHOLIPASE A2 INHIBITORY PROTEIN).	Oryctolagus cuniculus						
	CAB94770	ANNEXIN A11.	Mus musculus						
	ANXB_XENLA	ANNEXIN II TYPE I (LIPOCORTIN II) (CALPACTIN I HEAVY CHAIN)(CHROMOBINDIN 8) (P36) (PROTEIN I) (PLACENTAL ANTICOAGULANT PROTEINIV) (PAP-IV).	´Xenopus laevis						
	CAA13092	ANNEXIN V.	Mus musculus						
	<u>Q9ZVJ7</u>	PUTATIVE ANNEXIN.	Arabidopsis thaliana						
	ANX3_HUMAN	ANNEXIN III (LIPOCORTIN III) (PLACENTAL ANTICOAGULANT PROTEIN III)(PAP-III) (35-ALPHA CALCIMEDIN) (INOSITOL 1,2-CYCLIC PHOSPHATE 2-PHOSPHOHYDROLASE).	Homo sapiens						
	<u>AAH05595</u>	SIMILAR TO ANNEXIN A6.	Mus musculus						
	<u>Q43864</u>	ANNEXIN P35.	Zea mays						
	<u>P93158</u>	ANNEXIN (FRAGMENT).	Gossypium hirsutum						
	<u>093447</u>	ANNEXIN MAX4.	Oryzias latipes						
	Q9NGU7	ANNEXIN (FRAGMENT).	Taenia solium						
	<u>065848</u>	ANNEXIN.	Medicago truncatula						
	CAC34623	ANNEXIN A13 ISOFORM A.	Mus musculus						
	<u>070371</u>	LIPOCORTIN V (FRAGMENT).	Rattus norvegicus						
	ANXB_MOUSE	ANNEXIN A11 (ANNEXIN XI) (CALCYCLIN-ASSOCIATED ANNEXIN 50) (CAP-50).	Mus musculus						
	ANX2_CHICK	ANNEXIN II (LIPOCORTIN II) (CALPACTIN I HEAVY CHAIN) (CHROMOBINDIN 8)(P36) (PROTEIN I) (PLACENTAL ANTICOAGULANT PROTEIN IV) (PAP-IV).	Gallus gallus						
	ANX6_RAT	ANNEXIN VI (LIPOCORTIN VI) (P68) (P70) (PROTEIN III) (CHROMOBINDIN 20)(67 KDA CALELECTRIN) (CALPHOBINDIN-II) (CPB-II) (CALCIUM-BINDINGPROTEIN CATA 65/67).	Rattus norvegicus						
	ANXD_CANFA	ANNEXIN A13 (ANNEXIN XIII) (ANNEXIN, INTESTINE-SPECIFIC) (ISA).	Canis familiaris						
	BAA07708	ANNEXIN V.	Rattus norvegicus						
	AAH00871	ANNEXIN A3.	Homo sapiens						
	AAH01748	ANNEXIN A2.	Homo sapiens						

HOME | FAQ | LITERATURE | ABOUT | GLOSSARY | WHAT'S NEW | FEEDBACK

S impleM odularA rchitecture

R esearch T ool

<u>rr</u>

signalling	ç.								
<u>14 3 3</u>	<u>4.1m</u>	ADF	<u>ANK</u>	ARF		<u>ArfGap</u>	ARM	<u>B41</u>	
<u>B_lectin</u>	BAG	<u>BH4</u>	<u>BIR</u>	<u>BTK</u>		<u>C1</u>	<u>C2</u>	<u>Calx_beta</u>	
CARD	CASc	<u>CH</u>	<u>CheW</u>	<u>CNH</u>	1	<u>cNMP</u>	CULLIN	CYCc	
<u>DAGKa</u>	DAGKc	DAX	DEATH	DED]	DEP	<u>DSPc</u>	DUF1	
DUF2	DYNc	<u>EFh</u>	<u>EH</u>	<u>ENTH</u>]	<u>FBOX</u>	<u>FCH</u>	<u>FF</u>	
FH2	<u>FHA</u>	<u>FYVE</u>	<u>G_alpha</u>	GAF	1	GAS2	<u>GED</u>	<u>GGL</u>	
GoLoco	GRAM	<u>GS</u>	<u>GuKc</u>	HAMP]	HATPase_	<u>e HECTe</u>	<u>HisKA</u>	
<u>HPT</u>	HR1	<u>ILWEQ</u>	<u>IPPc</u>	<u>IQ</u>]	ITAM 👘	<u>KISc</u>	<u>L27</u>	
<u>LIM</u>	<u>LMWPc</u>	<u>MA</u>	<u>MeTrc</u>	MIR]	MYSc	MyTH4	<u>OPR</u>	
PAC	PAS	PBD	<u>PDZ</u>	<u>PH</u>]	<u>PI3K_C2</u>	PI3K_p85E	<u>3 PI3K_rbd</u>	
<u>PI3Ka</u>	<u>PI3Kc</u>	<u>PIPKc</u>	PLAc	PLCXc	ļ	PLCYc	PLDc	PP2Ac	
PP2Cc	<u>PTB</u>	<u>PTBI</u>	<u>PTPc</u>	PTPc_DS	<u>SPc</u>]	PTPc_mot	<u>if PX</u>	<u>PXA</u>	
<u>RA</u>	RAB	<u>RAN</u>	<u>RanBD</u>	<u>RAS</u>	1	RasGAP	RasGEF	RasGEFN	
<u>RBD</u>	<u>REC</u>	RGS	<u>RHO</u>	RhoGAP	. 1	RhoGEF	<u>RIIa</u>	<u>RING</u>	
<u>RIO</u>	<u>s tk x</u>	<u>S_TKc</u>	<u>SAM</u>	<u>SAR</u>		SEC14	Sec7	<u>SH2</u>	
SH3	small_GTPase	SOCS	SPEC	<u>SPRY</u>		<u>START</u>	<u>STYKe</u>	t_SNARE	
<u>TarH</u>	TBC	<u>TIR</u>	<u>TyrKc</u>	<u>UBA</u>]	UBCc	<u>UBQ</u>	<u>UBX</u>	
<u>VHP</u>	<u>VHS</u>	<u>VPS9</u>	<u>WD40</u>	<u>WH1</u>		WH2	<u>ww</u>	<u>ZnF_A20</u>	
$\underline{ZnF}AN1$	<u>ZnF_RBZ</u>	ZnF_UBP	<u>ZnF_ZZ</u>	<u>ZU5</u>					
nuclear									
35EXOc	53EXOc	Alnn	AD	FAMe	AP:	,	A P2Fc	AT book	AWS
AXH	BAH	BASIC	BB	<u>a</u>	BBO	= ∩X '	BCI	BRCT	BRIGHT
BRLZ	BROMO	CBE	СН	≍ ROMO	CSE	<u></u>	Cu FIST	DEXDe	DM
DSRM	DWA	DWB	eIF	50	ENI	- DO3e - 1	ETS	EXOIII	FES
FH	G natch	GIVe	H1	<u>s</u>	H2/	4	H2B	H3	H4
HALZ	HELICe	ньн1	Hh	- H2	HU	H i	HMG	HMG17	HNHc
HNS	HOLI	HOX	HR	DC	HSE	7	HTH ARAC	HTH ARSR	HTH ASN
HTH CRE	HTH DEO	R HTH D	TXR HT	H GNTR	HT	- H ICLR	HTH LACI	HTH LUXR	HTH MA
HTH ME	RR HTH XRE	IENR1	IEN	IR2	IPT		IRF	IRO	JmiN
<u>кн</u>	VDAD	V.,79	I FI	ur l	IF		LICANA	MA2	MADS

POU SAP TEA TOPEUc ZnF_C2HC	PreSET SET TFIIE TOPRIM ZnF_C3H	PUA SFM TFS2M Ubox 1 ZnF_C4	RIBO Skp1 TFS2 XPG 4 ZnF	<u>)e</u> 2 <u>14</u> <u>. CHCC</u>	<u>RRM</u> SMR TOP1Ac XPGN ZnF_GATA	<u>S4</u> <u>SRA</u> <u>TOP1Bc</u> <u>Zalpha</u> <u>ZnF_NFX</u>	SAND STE TOP2c ZnF_C2C2 ZnF_U1	<u>SANT</u> TBOX TOP4c ZnF_C2H2
extracellul A4_EXTRA BPI1 CCP COLFI CysPc EGF_like FIMAC Galanin GPS IFabd IL2 Knot1 LDLa LRR_SD22 LYZ2 NIDO PA2c POQ RNAse_Pc SF_P THN TSPc VWD ZP	ar AAI BPI2 ChtBD1 COLIPASE DEFSN END FN1 GASTRIN GRAN IG IL4_13 KR LIF_OSM LRR_TYP MACPF NL PAH PRP SAA SH3b TK TSPN WAP	ACR btg1 ChtBD2 CRF DISIN EPEND FN2 GEL HintC IG_like IL6 KU LINK LRRCT MAM NMU PAN_AP PSI SAPA ShKT TNF TY WIF	ALBUMIN C1Q ChtBD3 CSF2 DNaseIc FA58C FN3 GHA HintN IGc1 IL7 LamB LRR LRR LRRNT LRR LRRNT MATH NTR PBPb PTH SAPB SO TNFR UTG WNT1	I ANATO C4 CLa CT DSL FAS1 FAS1 GHB HomoR IGc2 IGF LamG LRR B2 LU MD NUC PBPe PTI SCP SOG TR FEE VIT WR1	2 APPLE CA CUB EGF FBG FRI GLA HX IGV INB LamGL AC LY NAT_PI OLF PDGF PTN SCY SR R TR_THY VPS10 WSC	B_lectin CALCITON CLECT CW EGF_CA fCBD FTP GLECT HYDRO IL1 Int_alpha LamNT 2 LRR_PS LysM PNGF OSTEO PKD PTX SEA STI 2 Tryp_SPc VWA XTALbg	BowB NIN CBD_IV CNX CY EGF_Lan FGF FU GLUCA IB IL10 KAZAL LCCL LRR_RI LYZ1 NH P PLP RICIN SERPIN TGFB TSP1 VWC ZnMc	3
Others AAA acid CBS ChS FAF GAA LH2 LO1 PLEC PleC R3H RH0 TAFH TG	PPc ACTIN h CLH L4 GIT L4 LRRcap 2 PolyA 2D S1 2 THY	alkPPc CUE GYF MIF4G PP2C_SIG SAM_PNT TPR	ANX CYCLIN HAT NDK PROF SNc TUDOR	BHL DCX HDc NEBU Pumilio Sorb WSN	BTB C Dnal F G_FLMN J PHB F PWI F SWIB S ZnF_TAZ 2	AD Z_HEAT AB_MPN INT WWP ynN ynN AF_UBR1		

	See Family Alignment in	CLUSTALW (CHROMA colored	d) format 💌						
	See alignment consens	sus sequence								
				100 17 BA						
		State of Street Street State	OMANE S		POLBC					
	POLBc									
	DNA polymerase type-B family									
	DNA polymerase alpha, delta, ep	silon and zeta chain	(eukaryota), DN	A polymerases in archaea, DN	A polymerase II in e. coli, mitc	ochondrial DNA polymerase				
	and and virus DNA polymerases									
	Occurrence of POLBc domains	/ proteins with POL	Bc in <u>nrdb</u>	364/358						
	E 1.4									
	Evolution									
	Species distribution (number of)	POLBc domains / p	roteins detected i	in non-redundant sequence da	tabase (<u>NRDB</u>))					
	Eukaryota	Archae	<u>a</u>	Bacte	ria	viruses				
	127 / 126	<u>38</u> / <u>38</u>		<u>6/6</u>		<u>179</u> / <u>174</u>				
	of these									
	Metazoa	<u>Fungi</u>		<u>Viridiplanta</u>	e (Plants)					
	<u>37 / 36</u>	<u>31</u> / <u>31</u>		<u>11</u> 7	<u>11</u>					
	v of these									
	Chordata	Arthropo	da	Nemai	toda	ochondriai DNA polymerases				
	22/22	<u>9/9</u>		<u>6</u> 7;	5					
	Number of POLBc domains / pro	teins in selected or	ganisms (to see 1	numbers in genomes, click on	1 the species)					
	Homo sapiens		M	lus musculus	Drosophila n	nelanogaster				
_				<u></u>	<u>y</u> ,					
∍an B	Caenorhabditis eleg	gans	Arab	noopsis thaliana	Saccharomyc	es cerevisiae				
	<u>6/5</u>			2/2	4/	4				

Nr. of POLBc domains /	proteins in SwissP	rot proteins of	predicted localisation	<u>on</u>						
intracellular			extracellular			membrane-associ	ated			
total		<u>51 / 51</u>								
nuclear		<u>51 / 51</u>	total			total				
cytoplasmic										
ER-golgi										
chloroplast			secreted		transmembrane					
mitochondrion										
<u>Cellular role</u>										
chromatin metab.		sign.	transp.	transl	•	transcr. repl.		interact.		
Binding (gatabasia							X			
Binding / catalysis							X			
Binding / catalysis Literature							X			
Binding / catalysis Literature Primary literature (helo	w); <u>Secondary</u> (Aut	omatically-deriv	ved) Literature				X			
Binding / catalysis Literature Primary literature (belo [1] Crystal structures of Wang J, et al. Biochemistry 35 (1) medline: 000867956	w); <u>Secondary</u> (Aut of an NH2-terminal f 996): 8110-9 <u>2</u>	omatically-derm ragment of T4 D	v ed) Literature NA polymerase and	dits complexe	es with sir	ngle-stranded DNA	X and with divale	nt metal ions.		
Binding / catalysis Literature Primary literature (belo [1] Crystal structures of Wang J, et al. Biochemistry 35 (1) medline: 000267956 Structure	w); <u>Secondary</u> (Aut of an NH2-terminal f 996): 8110-9 <u>2</u>	omatically-derm	v ed) Literature NA polymerase and	dits complexe	s with sir	ngle-stranded DNA	X and with divale	nt metal ions.		
Binding / catalysis Literature Primary literature (belo [1] Crystal structures of Wang J, et al. Biochemistry 35 (1) medline: 000267936 Structure 3D Structures of POLB	w); <u>Secondary</u> (Aut of an NH2-terminal f 996): 8110-9 2 c domains in <u>PDB</u>	omatically-deria	ved) Literature NA polymerase and 1clq 1	dits complexe	s with sir	ngle-stranded DNA 1991 - stranded DNA	X and with divale waf 1wag 1wah	nt metal ions.		
Binding / catalysis Literature Primary literature (belo [1] Crystal structures of Wang J, et al. Biochemistry 35 (1) medline: 000267936 Structure 3D Structures of POLB Links	w); <u>Secondary</u> (Aut of an NH2-terminal f 996): 8110-9 2 c domains in <u>PDB</u>	omatically-derin	ved) Literature NA polymerase and 1clq 1	dits complexe	s with sir	ngle-stranded DNA 1994 1994 1995 1199 1	X and with divale waf 1wag 1wah	nt metal ions.		
Binding / catalysis Literature Primary literature (belo [1] Crystal structures of Wang J, et al. Biochemistry 35 (1) medline: 000867956 Structure 3D Structures of POLB Links PFAM	w); <u>Secondary</u> (Aut of an NH2-terminal f 996): 8110-9 2 c domains in <u>PDB</u>	omatically-derin ragment of T4 D	ved) Literature NA polymerase and 1clq 1 B	dits complexe	s with sir	ngle-stranded DNA 1994 1994 1995 1199 1	X and with divale	nt metal ions.		

Additional features of SMART

- Used for identification of genetically mobile domains and analysis of domain architectures
- Can search for proteins containing specific combinations of domains in defined taxa
- Can search for proteins with identical domain architecture
- Also has information on intrinsic features like signal sequences, transmembrane helices, coiled-coil regions and compositionally biased regions

ProDom

- http://www.toulouse.inra.fr/prodom.html
- Groups all sequences in SPTR into domains ->150 000 families
- Use automatic process to build up domains -DOMAINER
- For expert curated families, use PfamA alignments to build new ProDom families
- Use diameter (max distance between two domains in family) and radius of gyration root mean square of distance between domain and family consensus), both counted in PAM (percent accepted mutations (no per 100 aa) to measure consistency of a family, lower these values, more homogeneous family

Building of ProDom families

WARNING: new procedure for ProDom construction

· July 1998 (ProDom 35)

The ProDom protein domain database consists of an automatic compilation of homologous domains. Current versions of ProDom are built using a novel procedure based on recursive PSI-BLAST searches (Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ, 1997, *Nucleic Acids Res.*, 25:3389-3402; Gouzy J., Corpet F. & Kahn D., 1999, *Computers and Chemistry* 23:333-340.) Large families are much better processed with this new procedure than with the former DOMAINER program (Sonnhammer, E.L.L. & Kahn, D., 1994, *Protein Sci.*, 3:482-492).

· March 2001 (ProDom 2001.1)

More info

390 ProDom families were generated automatically using PSI-BLAST with a profile built from the seed aligments of Pfam-A 4.3 families.

 Last ProDom update:
 March 30th, 2001

 Current ProDom release:
 ProDom 2001.1 / (Statistics)

 built from
 non fragmentary sequences from SWISS-PROT 39 + TREMBL + TREMBL updates - December 8, 2000

Both the ProDom database and this server have been designed as a tool to help analyze domain arrangements of proteins and protein families (Corpet F, Servant F, Gouzy J, Kahn D (2000) ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons. Nucleic Acids Res. 28:267-269). Strong emphasis has been put on the graphical user interface which allows for interactive analysis of protein homology relationships. Here is a brief outline of what the ProDom server can do for you:

BLAST	Homology search against all domain sequences in ProDom
	ProDom domain arrangements of all proteins sharing homology with a given protein, or ProDom domain arrangements of all proteins containing a given domain
DLILLDLRLPD DLILLDLYLPD KILVSDVAMPD	Retrieval of ProDom multiple alignments and consensus sequences.
S ES	Navigation between ProDom, SWISS-PROT, TrEMBL, PROSITE, PFAMA, INTERPRO and PDB

nterPro

	Your Query : "" vs 3	ProDom release 2001.1
	Warning: Original output has been filtered to yield non-redundant :	similarities
	BLASTP 2.0.8 [Jan-05-1999]	
	Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Scl Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997 "Gapped BLAST and PSI-BLAST: a new generation of protein database : programs", Nucleic Acids Res. 25:3389-3402. Query=	haffer,), search
	(735 letters)	
	Database: ProDom2001.1 multiple alignments 1,057,487 sequences; 119,872,694 total letters	
	Searchingdone	
	ProDom domains producing High-scoring Segment Pairs:	
	Position ProDom domain Sco	ore E value
	 1-108 #PD010653 KINASE DIACYLGLYCEROL ALPHA TRANSFERASE 109-179 #PD009174 KINASE CALCIUM-BINDING CHANNEL POTASSIUM 112-182 #PD00012 112-180 #PD024029 206-253 #PD00215 270-334 #PD011450 KINASE DIACYLGLYCEROL TRANSFERASE 335-380 #PD241406 KINASE ALPHA DIACYLGLYCEROL DAG 335-380 #PD343891 KINASE ALPHA DIACYLGLYCEROL DIGLYCERIDE 361-504 #PD002780 KINASE DIACYLGLYCEROL TRANSFERASE BINDING 520-701 #PD002939 KINASE DIACYLGLYCEROL TRANSFERASE 702-734 #PD150074 KINASE DIACYLGLYCEROL ALPHA TRANSFERASE 	561 3e-57 348 3e-32 101 0.003 107 6e-04 282 2e-24 386 1e-36 236 4e-19 126 3e-06 644 6e-67 952 e-103 190 1e-13
	> <u>PD002939</u> (Closest domain: KDGA_HUMAN 520-701) Number of sequences in family: 44 Most frequent protein pages: KDG4(4) KDG4(3)	
	Commentary (automatic): KINASE DIACYLGLYCEROL TRANSFERASE DIGLYCERIDE PHORBOL-ESTER D. BINDING ALPHA DGK- MULTIGENE Length = 182 Score = 952 (375 bits), Expect = e-103 Identifies = 182/182 (100%). Positives = 182/182 (100%)	AG
EMBL	Ouerv: 520 IINNYFSIGVDASIAHRFHIMREKYPEKFNSRMKNKLWYFEFATSESIFSTC	KKLEESLT 579
European Bioinformatics	IINNYFSIGVDASIAHRFHIMREKYPEKFNSRMKNKLWYFEFATSESIFSTCI Sbict: 520 IINNYFSIGVDASIAHRFHIMREKYPEKFNSRMKNKLWYFFFATSESTFSTCI	KKLEESLT KKLEESLT 579

0	100	200	300	400	500	600	70
+ + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	• • • • • • • • • • • • • • • • • • • •	*****	++++++++			
\leftarrow	~~~ ?????		241	\times	XXXX		
Form to "Mu	ltalin" vour s	ub sequence with Pr	oDom domain				
	,						
Domain ID		Sequence BEG	IN Sequence END	Submit	Quera		
#PD002939		320	701	Submit	Query		
#PD002780		361	504	Submit	Query		
#PD010653		1	108	Submit	Query		
#PD011450		270	334	Submit	Query		
#PD009174		109	179	Submit	Query		
#PD000215		206	253	Submit	Query		
#PD241406		335	380	Submit	Query		
#PD150074		702	734	Submit	Query		
#PD343891		335	380	Submit	Query		
#PD024029		112	180	Submit	Ouerv		
#FD024029		112	182	Submit	Query		
#PD000012		112	102	Saparo	Query		
Form to creat	e a "Swiss-M	odel" for your sub s	equence using ProDom	domain homol	ngv		
			-1		-67		
Domain ID		Sequence BEG	IN Sequence END	Cashari t	Ouever		
#PD009174		109	179	Submit	Query		
#PD000215		206	253	Submit	Query		
#PD000012		112	182	Submit	Query		

		sentation of all proteins c	ontaining th	is domain.						
Pro	Dom Release 2001.1	uly as a tree.								
	MSF Alignment in MSF									
Ľ	omain PD009174	<u>Build</u> an ESPript view	EP							
		ver with this domain	12 111							
							1			
Most frequent protein name:	s KDGA(4) RECO(3) KDGB(2	2)								
Commentary (automatic)	KINASE CALCIUM-BINDI TRANSFERASE DIGLYCER	NG CHANNEL POTA: RIDE	SSIUM REPEAT DIAC	YLGLYCE	ROL MYRIS	TATE ALP	'HA			
Alignment length	82									
Number of sequences in fam	nily 72									
Consistency indicator	DIAMETER: 330 PAM RADIUS OF GYRATION: 10 SEQUENCE CLOSEST TO	01 PAM CONSENSUS: NCS1	PROSITE							
			Consensus positio	n PROS	ITE Pattern	PROSE	fE Entry	Documenta	tion	
			18-30	EF	HAND		PDOC	00018		
InterPro 2.0			70-82	EF	HAND		PDOC	00018		
ID Accession nu	mber				and the second					
"EF-hand" <u>IPR00204</u>	<u>48</u>		Samula 3D Sti	metures						
			• Sample SD Su	i uctul es						
⊖Pfam-A	=		SwissProt ID	position	PDB Short	chain number	position	Entrez	Scop	Rasmol
ID Accession number efhand <u>PF00036</u>		RECO BOVIN	92-171	<u>liku</u>	1	92-171	Entres	Scop	Rasmol	
OPROSITE			RECO HUMAN	94-125	<u>ljsa</u>	1	94-125	Entrez	Scop	Rasmol
Consensus position PRO	SITE Pattern PROSITE Entry 1	Documentation	RECO MOUSE	99-125	lrec	1	87-113	Entres	Scop	Rasmol
18-30 E	F HAND PDOCO	0018	ana an inter	2	G ₁₀					9.9

Other corres	descriptions of the fa sponding to this alignm	nent									
	Sequence ID	start end	weight	10 	20 	30 -	40 	50 	60 	70 	80
5 €			5.51	GSPEDKSRL	MFTMYDLDE	N <mark>G</mark> FLSKD <mark>E</mark> FF	TMMRSFIEI	SNN	C-LSKAQLAE	VVESMFRESG	FQDKEEL T WED <mark>F</mark>
1		826 899	4.34	.SRGKTDD <mark>KL</mark> RI	IFDMCDNDR	N <mark>GVI</mark> DKG <mark>E</mark> LS	SEMMRSLVEI	ART	TSLGDDQVTE	LIDGM <mark>F</mark> QDVG	LEHKNHLTYQD <mark>F</mark>
9			11.71	RGRPEDKLEF	MFRLYDSDG	NGFLDSSEII)K <mark>I</mark> ISQMMHV	AEY	LEWDVTELRP	ILQEMMQEMD	YDN <mark>DG</mark> FVSLD <mark>E</mark> .
1		84 160	2.38	.AHGTPEDKLKW	IS <mark>FKLYD</mark> KDGI	D <mark>GAI</mark> TRS <mark>E</mark> MI	.E <mark>I</mark> MRAVYKM	SVVASL	TKVNPMTAEE	CTNRIFVRLD	KDQNAIISLQ <mark>EF</mark>
2 €		825. 	2.72	KMEQKLKU	IYFKLYDADGI	NGSIDKNELI	.DMFMAVQAL]	NGQQTLSPEE	FINLV <mark>F</mark> HKI <mark>D</mark>	INNDGELTLEEF
3 €			3.65	RGKLEHKLKU	TFKVYDKDG	N <mark>G</mark> CIDKTELI	.EIVEGIYQL	KKVCRRELET	ERGPLLTPEE	VVDRI <mark>F</mark> QLV <mark>D</mark>	ENG <mark>DG</mark> QLSLD <mark>EF</mark>
1		97 170	1.64	GTPEEKLKW	IA <mark>F</mark> RMY <mark>D</mark> VDGI	NGVIDIQEMT	rk <mark>i</mark> vqa <mark>i</mark> ydm	LGACS	SNRPADSAEE	RAKNI <mark>F</mark> AKMD	ENNDGQLTQDEF
1		96 169	2.01	GTPEQKLEW	AFRMYDIDG	N <mark>G</mark> TIDEK <mark>E</mark> MJ	[K <mark>I</mark> IEA <mark>I</mark> YEM	LGPEV	TKSADDSPRK	RAKMI <mark>F</mark> EKMD	VNNDKELTLK <mark>EF</mark>
13 ⊡			11.38	TSA <mark>G</mark> KTNQ <mark>KLE</mark> U	IAFSLYDVDGI	NGTISKNEVI	.E <mark>I</mark> VTA <mark>I</mark> FKM	IPPEDQKK	LPEDENTPEK	RADKIWAYF <mark>D</mark>	KNDDDKLTEG <mark>EF</mark>
6 ⊞			2.43	TSRGSFEQKLNU	AFNMYDLDG	D <mark>GKI</mark> TRV E MI	.E <mark>I</mark> IEA <mark>I</mark> YKM	VGTVIMMK	MNEDGLTPEQ	RVDKI <mark>F</mark> SK MD	KNK <mark>D</mark> DQI T LD <mark>EF</mark>
3 ⊞			4.32	TS <mark>RG</mark> NLDEHFAU	JAFKLYDVDNI	D <mark>GF I</mark> TRD <mark>E</mark> MY	7D <mark>I</mark> VDA <mark>I</mark> YQM	VGNMLP	QPKDENTPQK	RVDKI <mark>FTNMD</mark>	KNHDGQLTREEF
27 €			19.92	.SRGTVDEKLBW	TFKLYDLNK	D <mark>G</mark> Y I TWD <mark>E</mark> MF	D <mark>IITSI</mark> YDM	MGKHTY	PHHTEEQPCE	HVEQI <mark>F</mark> QKMD	KNK <mark>DGVITIEEF</mark>
72	Consensus		72.01	TSRGTPEDKLEW	IAFKLYDVDGI	NGYIDKDEMI	.E <mark>I</mark> IKA <mark>I</mark> YEM	MGKH-AQY	MPEDEDTPEE	RVDKI <mark>F</mark> QKMD	KNNDGQITLEEF
2	PROSITE									=	

	(4) 127 单弦式的故障 使一致 化化学设备。
Minimal distance between sequences (in PA	M) 20
Maximal number of clusters	12
If possible, clusterIDs should contain the following strin	g (e.g.: human)
To display a new alignment with these parameters, Submit	Query

For each protein you can retrieve "All proteins sharing a homologous domain" by clicking on the image 🔳 adjacent to sequence name

Total : 9 protein(s)

Proteins having the same domain structure

list_1 >go_back<

KDGG_HUMAN KDGG_RAT

list_2 >go back<

KDGB_HUMAN KDGB_RAT

PRINTS -Fingerprint DB

- http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/
- Fingerprint- set of motifs used to predict occurrence of similar motifs in a sequence
- Built by iterative scanning of OWL database
- Multiple sequence alignment- identify conserved motifs- scan database with each motif- correlate hitlists for each- should have more sequences now- generate more motifs- repeat until convergence
- Recognition of individual elements in fingerprint is mutually conditional
- True members match all elements in order, subfamily may match part of fingerprint

PRINTS is a compendium of protein **fingerprints**. A fingerprint is a group of conserved motifs used to characterise a protein family; its diagnostic power is refined by iterative scanning of a SWISS-PROTTEMBL composite. Usually the motifs do not overlap, but are separated along a sequence, though they may be contiguous in 3D-space. Fingerprints can encode protein folds and functionalities more flexibly and powerfully than can single motifs, full diagnostic potency deriving from the mutual context provided by motif neighbours. References

New:

- SPRINT Search PRINTS-S (relational PRINTS)
- InterPro Search the integrated InterPro family database

Direct PRINTS access:

- By accession number
- By PRINTS code
- By database code
- By text
- By sequence
- By title
- By number of motifs
- By author
- By query language

PRINTS search:

- Search PRINTS with NEW <u>FingerPRINTScan</u>
- FPScan
- GRAPHScan
- <u>MULScan</u>
- FingerPRINTScan binaries and source are available: <u>contact scordis@bioinf.man.ac.uk</u>

PRINTS BLAST search

Run a <u>BLAST search</u> of sequences in PRINTS

	WORKLIST ENTRIES (99):	
	WORKLIST ENTRIES (99): 1433ZETA View alignment 6PFRUCTKNASE View alignment ACETATEKNASE View alignment ACTIV View alignment ACTIVIN2R View alignment ADENOKINASE View alignment ADENOKINASE View alignment ADENYLTKNASE View alignment ADENYLTKNASE View alignment ANNEXINI View alignment CHCZNFINGER View alignment CALSEQUESTRN View alignment CASNKINASE View alignment CAMPKINASE View alignment CAMPKINASE View alignment CAMPKINASE View alignment CONNEXIN View alignment CONNEXIN View alignment CONNEXINAL View alignment CONNEXINAL View alignment DAGPEDOMAIN View alignment FNTYPEI View alignment FNTYPEIII View alignment GLUSKINASE View alignment GPCRKINASE View alignment GPROTEINB View alignment GPROTEINB View alignment HEATSHOCK70 VIEW ALIGNMEN HEATSHOCK70 VIEW ALIGNMEN HEATSHOCK70 V	<pre>14-3-3 protein zeta signature 6-phosphofructo-2-kinase family signature Acetate kinase family signature Activin type II receptor signature Adenosine kinase signature Adenosine kinase signature Adenylate kinase signature Annexin type II signature Bacterial sensor protein C-terminal signature C2HC-type zinc-finger signature Calsequestrin signature camp-dependent protein kinase signature CCLC-3 chloride channel signature Capendent protein kinase signature CLC-3 chloride channel signature Comexin signature Gap junction alpha-1 protein (Cx43) signature Cyclin-dependent kinase regulatory subunit signature Diacylglycerol/phorbol-ester binding signature Type II EGF-like signature Fibronectin type I repeat signature Glutamate 5-kinase family signature GPCR kinase signature G-protein (transducin) signature G-protein (transducin) signature G-protein (transducin) signature Hexokinase family signature Histidine triad family signature Hydroxyethylthiazole kinase family signature Hydroxyethylthiazole kinase family signature Hydroxyethylthiazole kinase family signature Hydroxyethylthiazole kinase family signature Interleukin 8A receptor signature</pre>
	KCHANNEL View alignment	Potassium channel signature
	LEUZIPPRCREB View alignment	CAMF response element binding (CREB) protein signature LmbP protein signature
EMBL	LPARECEPTOR View alignment	Lysophosphatidic acid receptor (EDG2) signature
European Bioinformatics	MARCKS View alignment	MARCKS family signature
	MEVGALKINASE View alignment	Mevalonate kinase family signature
	MPIPHPHTASE View alignment	M-phase inducer phosphatase signature

ANNEXINI View alignment Annexin type I signature Type of fingerprint: COMPOUND with 8 elements Links: PRINTS; PRO0196 ANNEXIN; PRO0198 ANNEXINII; PRO0199 ANNEXINII; PRINTS; PRO0200 ANNEXINIV; PRO0201 ANNEXINV; PRO0202 ANNEXINVI INTERPRO; IPRO02388 PDB; 1AIN 3Dinfo SCOP; 1AIN CATH; 1AIN

Creation date 26-OCT-1993; UPDATE 10-JUN-1999

1. BARTON, G.J., NEWMAN, R.H., FREEMONT, P.S. AND CRUMPTON, M.J. Amino acid sequence analysis of the annexin super-gene family of proteins. EUR.J.BIOCHEM. 198 749-760 (1991).

2. GEISOW, M.J. Annexins-forms without function but not without fun. TIBTECH 9 180-181 (1991).

The annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner [1]. There are 11 distinct classes of annexin, each of which has an amino acid sequence consisting of an N-terminal `arm' followed by 4 or 8 copies of a conserved domain of 61 residues (only one of these residues, an arginine, is conserved between all copies): the calcium binding sites are found within the repeated domains [2]. Individual repeats (sometimes known as endonexin folds) consist of 5 alpha-helices wound into a right-handed superhelix.

Each annexin class is thought to have a specific function, although for some the precise role is unclear. The N-terminal residues are believed to confer the functional specificity that differentiates each class. Type I annexins inhibit phospholipase A2, either in response to inflammation, or following dephosphorylation by protein kinases involved in the signal transduction pathway. The protein may also associate with the cell cytoskeleton by binding to actin fibres.

ANNEXINI is an 8-element fingerprint that provides a signature for type I annexins. The fingerprint was derived from an initial alignment of 5 sequences: motif 1 encodes an N-terminal region; motifs 2 and 3 span the first repeat (cf. PROSITE pattern ANNEXIN (PS00223)); motifs 4-6 span the first half of 3 further repeats; and motifs 7 and 8 encode C-terminal regions. Motifs 2, 4, 5 and 6 include the conserved Arg, 4 and 6 also containing the GxG region associated with calcium binding. Two iterations on OWL21.1 were required to reach convergence, at which point a true set comprising 11 sequences was identified. Thirty nine partial matches were also found, corresponding to sequences from the remaining annexin classes.

SUMMAR	RY IN	FORMA	TION						
9	code	s int	volvir	na 8	elem	ents			
0	code:	s int	volvir	nar 7	elem	ents			
10	code:	s int	volvir	ng 6	elem	lents			
29	code:	s inv	volvir	ng 5	elem	lents			
5	code:	s int	olvir	ng 4	elem	lents			
4	code:	s int	volvir	ng 3	elem	lents			
10	code:	s inv	volvir	ng 2	elem	lents			
				-					
COMP	OSITE	FINC	ERPRI	INT II	IDEX				
81	9	9	9	9	9	9	9	9	
71	0	0	0	0	0	0	0	0	
61	0	10	10	10	10	10	0	10	
51	0	29	7	28	29	29	0	23	
41	0	4	1	5	5	5	0	0	
31	0	0	1	4	3	3	0	1	
21	0	9	1	1	0	1	0	8	
+	1	2	3	4	5	6	7	8	
True nos	sitio	e 9							
ANX1 H	IMAN		MXI F	NTVOS		ANX1 (CAVCII		ANX1 RAT
ANX1 R	ABTT		NX1 N	TOUSE		AN12	COLLT		ANIL COLLT
ANX1 R	ODSP	-							
Subfami	lv: I	Codes	s invo	lvind	тбе	lement	ts		
Subfam	ilv T	rue r	ositi	ives.					
093446	1	1	MX2 H	IUMAN		ANX2	CHICK		ANX2 RAT
ANX2 B	OVIN	ī	MX2 I	IOUSE		ANXB	XENLA		ANX2 XENLA
093444		Ī	NX5 E	BOVIN					
Subfami)	ly: (Codes	3 invo	olving	у 5 е	lement	ts		
Subfam:	ily Tr	rue p	ositi	ives.					
093447		1	MX3_F	RAT		ANX5_	CHICK		ANX6_MOUSE
035639		1	NX4 I	IOUSE		ANX4 I	HUMAN		ANX4 RAT
ANXA_B	OVIN	1	MXB_E	BOVIN		ANX4_1	PIG		ANX4_BOVIN
ANXA_R	ABIT	1	MX6_F	IUMAN		ANX4_	CANFA		ANXA_HUMAN
ANX6_R	AT	1	MX5_F	RAT		ANX3_I	HUMAN		ANX5_MOUSE
ANXA_M	OUSE	1	MX5_F	HUMAN		ANXD_I	HUMAN		093445
ANX7_H	UMAN	1	MX7_I	IOUSE		ANX6_	CHICK		ANXX_DROME
ANXD_CA	ANFA								
Subfami]	ly: (Codes	s invo	olving	у4 е	lement	ts		
Subfam:	ily T	rue p	ositi	ives					
ANX8_H	UMAN	2	35640	2		ANXC_I	HYDAT		ANX5_CYNPY
Subferi	1	Coder	, inte	luir	* 2 ~	lement	+ =		
Subfam:	ilv T	rue r)ositi	ives.	, . e	remett	00		
ANX7 X	ENLA	1 1 1	27473	3		ANX7 1	DICDI		059907
Subfami	lv: (Codes	invo	lvino	12 e	lemen	ts		
Subfam	ily T	rue r	ositi	ives.					
027864			081536	5		08153	5		076027
Q43863		Ō	24131	ī		Q4265	7		024132
082090		Ō	65848	3			-		
		-		-					

	Q27864 NEX 081536 ANN 081535 ANN 076027 ANN 043863 ANN 024131 ANN 024132 ANN 024132 ANN 065848 ANN 065848 ANN SCAN HISTORY 0WL21_1 2 0WL26_0 1 100 3 SPTR37_9f 2 122 3	NEX1 ANNEXIN - CAENORHABDITIS ELEGANS. ANNEXIN P34 - LYCOPERSICON ESCULENTUM (TOMATO). ANNEXIN P35 - LYCOPERSICON ESCULENTUM (TOMATO). ANNEXIN 31 (ANNEXIN XXXI) - HOMO SAPIENS (HUMAN ANNEXIN 933 - ZEA MAYS (MAIZE). ANNEXIN - NICOTIANA TABACUM (COMMON TOBACCO). ANNEXIN - CAPSICUM ANNUUM (BELL PEPPER). ANNEXIN - NICOTIANA TABACUM (COMMON TOBACCO). FIBER ANNEXIN - GOSSYPIUM HIRSUTUM (UPLAND COTT ANNEXIN - MEDICAGO TRUNCATULA (BARREL MEDIC). TORY 2 100 NSINGLE 1 100 NSINGLE				
	INITIAL MOTIF SETS					
	ANNEXINII Le: Annexin type I motif	ngth of motif = 16 I - 1	Motif numb	er = 1		
	FLKQAUFIENEEQEYV FLKQARFLENQEQEYV FLKQAYFIDNQEQDYV FLKQAUFMENLEQECI FLKQACYIEKQEQEYV	PCODE ANX1_HUML ANX1_MOU: ANX1_CAV0 ANX1_COL0 ANX1_RJ	ST SE 6 SE 7 ST 7 ST 6	INT 6 7 7 6		
	ANNEXINI2 Le: Annexin type I motif	ngth of motif = 23 II - 1	Motif numb	er = 2		
	MVKGVDEATIIDILTKRNNAQ MVKGVDEATIIDILTKRTNAQ TVKGVDEATIIDILTKRNNAQ TAKGVDEATIIDINTTRTNAQ MVKGVDEATIIDILTKRTNAQ	PCODE RQ ANX1_HUML RQ ANX1_MOU: RQ ANX1_CAVE RP ANX1_COLI RQ ANX1_RA	ST SE 55 SE 55 SC 56 SI 51 ST 55 ST 55	INT 33 33 33 28 33		
	ANNEXINI3 Le: Annexin type I motif	ngth of motif = 17 III - 1	Motif numb	er = 3		
	LKKALTGHLEEVVLALL LRKALTGHLEEVVLAML LKKALTGHLEEVVLALL MKRVLKSHLEDVVVALL LKKALTGHLEEVVLAML	PCODE ANX1_HUML ANX1_MOU: ANX1_CAV0 ANX1_COL0 ANX1_RJ	ST SE 95 SE 95 SU 96 ST 91 ST 95	INT 17 17 17 17 17		
	ANNEXINI4 Le: Annexin type I motif	ngth of motif = 22 IV - 1	Motif numb	er = 4		
	LRAAMKGLGTDEDTLIEILAS	PCODE R ANX1 HIIM	ST N 122	INT 10		
EMBL	LRGAMKGLGTDEDTLIEILTT	R ANX1_MOU:	E 122	10		
European Bioinformatics Institute	LRAAMKGLGTDEDTLIEILVS	R ANXI CAV	. <mark>U</mark> 123	10		
curopean bioinformatics institute	LRACMKGHGTDEDTLIEILAS	R ANX1_COLI	I 118	10		
	LRAAMKGLGTDEDTLIEILTT	r <u>anxi_r</u> a	T 122	10		

Scan of sequence: USER_SEQUENCE

Highest scoring fingerprints for your query							
Fingerprint	E-value	GRAPHScan					
ANNEXINI (relations)	7.394563e-92	<u>Graphic</u>					
ANNEXIN (relations)	2.174040e-66	<u>Graphic</u>					
ANNEXINIL (relations)	3.575397e-54	<u>Graphic</u>					
ANNEXINV (relations)	1.433121e-44	<u>Graphic</u>					
ANNEXINII (relations)	1.698603e-44	<u>Graphic</u>					
ANNEXINVI (relations)	1.798458e-39	<u>Graphic</u>					
ANNEXINIV (relations)	7.809646e-39	<u>Graphic</u>					

for further information choose any of the following options

Simple - Top Ten
 Detailed - Top Ten (detailed by motif)

Back to top

Ten top scoring fingerprints for your query										
Fingerprint	No. of Motifs SumId AveId PfScore Pvalue Evalue GRAPHScan									
ANNEXINI	8 of 8	7.1e+02	88	6586	2.9e-97	7.4e-92	IIIIIII	<u>Graphic</u>		
ANNEXIN	6 of 7	381.47	63.58	3841	8.5e-72	2.2e-66	IIIII.I	<u>Graphic</u>		
ANNEXINII	6 of 8	408.76	68.13	4236	1.4e-59	3.6e-54	.IIII.II	<u>Graphic</u>		
ANNEXINV	6 of 8	325.08	54.18	3484	5.6e-50	1.4e-44	I.III.II	<u>Graphic</u>		
ANNEXINIII	6 of 8	343.25	57.21	3780	6.6e-50	1.7e-44	.III.III	<u>Graphic</u>		
ANNEXINVI	6 of 8	317.61	52.94	3406	7e-45	1.8e-39	.IIII.II	<u>Graphic</u>		
ANNEXINIV	6 of 8	337.19	56.20	3374	3e-44	7.8e-39	IIIIII	<u>Graphic</u>		
RSOLVASERUVC	2 of 5	58.57	29.29	414	5.3e-06	1.4	ii.	<u>Graphic</u>		
VD10PROTEIN	2 of 6	49.20	24.60	419	4.5e-05	12	ii	<u>Graphic</u>		
JOSEPHIN	2 of 11	63.19	31.60	495	8.5e-05	22	.iI	<u>Graphic</u>		

FingerPrint Name	Motif Number	IdScore	PfScore	Pval	Sequence	Length	1ow	Pos	high
	1 of 8	78.47	712	3.52e-10	FLKQAWFIENEEQEYV	16	6	6	7
	2 of 8	89.86	1001	2.22e-16	MVKGVDEATIIDILTKRNNAQRQ	23	51	55	56
	3 of 8	84.31	692	7.82e-12	LKKALTGHLEEVVLALL	17	91	95	96
	4 of 8	92.42	962	1.11e-16	LRAAMKGLGTDEDTLIEILASR	22	118	122	123
ANNEXINI	5 of 8	86.42	1210	1.00e-16	LYEAGERRKGTDVNVFNTILTTRSYPQ	27	201	205	206
	6 of 8	89.42	923	4.66e-15	MKGVGTRHKALIRIMVSRSEI	21	280	285	286
	7 of 8	92.59	420	1.55e-05	ISLCQAILD	9	315	320	321
	8 of 8	93.65	666	5.87e-10	ETKGDYEKILVALC	14	324	329	330
	1 of 7	60.79	647	1.23e-12	MVKGVDEATIIDILTKRNNAORO	23	26	55	384
	2 of 7	54.68	463	8.24e-10	LKKALTGHLEEVVLALL	17	66	95	424
	3 of 7	75.00	781	2.89e-15	LRAAMKGLGTDEDTLIEILASR	22	93	122	451
ANNEXIN	4 of 7	57.75	737	5.55e-16	LYEAGERRKGTDVNVFNTILTTRSYPQ	27	175	205	534
	5 of 7	72.13	724	1.27e-13	MKGVGTRHKALIRIMVSRSEI	21	255	285	614
	7 of 7	61.11	489	4.13e-08	ETKGDYEKILVALC	14	299	329	658
	2 of 8	68.32	786	2.14e-11	MVKGVDEATIIDILTKRNNAORO	23	46	55	47
	3 of 8	66.39	547	1.77e-09	LKKALTGHLEEVVLALL	17	86	95	87
	4 of 8	79.87	901	3.16e-13	LRAAMKGLGTDEDTLIEILASR	22	113	122	114
ANNEXINII	5 of 8	56.08	724	9.41e-10	LYEAGERRKGTDVNVFNTILTTRSYPO	27	197	205	198
	7 of 8	76.87	764	1.09e-12	MKGVGTRHKALIRIMVSRSEI	21	277	285	278
	8 of 8	61.22	514	1.13e-06	ETKGDYEKILVALC	14	321	329	322
	1 of 8	52.17	570	7 59e-09	MVKGVDEATIIDII.TKENNAORO	23	26	55	31
	3 of 8	42.86	388	5.26e-06	LKKALTGHLEEVVLALL	17	66	95	71
	4 of 8	64.94	679	1.43e-11	LRAAMKGLGTDEDTLIEILASR	22	93	122	98
ANNEXINV	5 of 8	48.15	574	4.54e-08	LYEAGERRKGTDVNVFNTILTTRSYPO	27	175	205	181
	7 of 8	60.85	808	5.88e-13	MKGVGTRHKALIRIMVSRSEIDMNDIK	27	255	285	261
	8 of 8	56.12	465	3.66e-06	ETKGDYEKILVALC	14	299	329	305
	2.of 8	59.42	640	1 90e-09	MVKGVDEATIIDILTKENNAORO	23	32	55	33
	3 of 8	50.98	433	1.04e-05	LKKALTGHLEEVVLALL	17	72	95	73
	4 of 8	66.67	759	4.94e-12	LRAAMKGLGTDEDTLIFILASR	22	99	122	100
ANNEXINIII	6 of 8	55.56	762	2.11e-09	LYEAGERRKGTDVNVFNTILTTRSYPO	27	182	205	183
	7 of 8	65.38	760	2.10e-11	KGVGTRHKALIRIMVSRSEIDMNDIK	26	263	286	264
	8 of 8	45.24	426	1.52+.05	ETKODVEKII VALC	14	306	270	207

BLOCKS

- http://www.blocks.fhcrc.org/
- Multiply aligned ungapped segments corresponding to most highly conserved regions of proteins- represented in profile
- Built up using PROTOMAT (BLOSUM scoring model), calibrated against SWISS-PROT, use LAMA to search blocks against blocks
- Starting sequences from Prosite, PRINTS, Pfam, ProDom and Domo total of 2129 families

Building of Blocks

SEARCHING BLOCKS

- Compare a protein or DNA (1-6 frames) sequence to database of blocks
- Blocks Searcher- used via internet or email: First position of sequence aligned to first position of first block score for that position, score summed over width of alignment, then block is aligned with next position etc for all blocks in database- get best alignment score. Search is slow (350 aa/2 min)
- Can search database of PSI-BLAST PSSMs for each blocks family using IMPALA

EMBL European Bioinformatics Institute

A service for biological sequence analysis at the Fred Hutchinson Cancer Research Center in Seattle, Washington, USA. Visit the Blocks mirror site at the Weizmann Institute of Science in Israel.

Contents:

- What's New as of 18 November 2000
- <u>About Blocks</u>
- Current Blocks Release
- Blocks Bibliography
- Get Blocks by key word
- Get Blocks by number
- Block Searcher to search a sequence vs Blocks
- Block Searcher Help
- <u>Reverse PSI-BLAST Searcher</u> to search a sequence vs Blocks using NCBI's RPS-BLAST program
- RPS-BLAST Help
- Impala Searcher to search a sequence vs Blocks using NCBI's IMPALA program
- IMPALA Help
- Block Maker to create Blocks
- Block Maker Help
- <u>Multiple Alignment Processor</u> to excise Blocks from multiple alignments
- LAMA Searcher to search Blocks vs Blocks
- <u>LAMA Help</u>
- COBBLER to search embedded Blocks vs sequence databases
- About COBBLER
- <u>CODEHOP</u> to design PCR primers from Blocks
- <u>CODEHOP Help</u>
- Biassed Block Checker
- Blocks FTP Site European Bioinfor

EMBL

- Guide to Sequence Analysis Tools
- Protein Family Sites and Resources

	The following 51 item(s) match your query `kinase':
	• <u>DM00522</u>
	DOMO2.0.DM00522 499 kw TRYPSIN KINASE KUNITZ PANCREATIC.
	ADENOKINASE A denosine kinase signature
	• <u>PR01049</u>
	PHOSPHBKNASE Phosphorylase kinase family signature PR00988
	URIDINKINASE Uridine kinase signature
	PR01099 INSETTETEVENA CE Un documente data insette data insette directore documente data insette data i
	BP04294
	p99.1.4294 CYCLIN-DEPENDENT KINASE INHIBI
	PR00104 COMPKINASE of MP-dependent protein kinase signature
	PF01504
	PIP5K Phosphatidylinositol-4-phosphate 5-Kinase
	 PROUD78 PI3KINASEP85 PI3 kinase P85 regulatory subunit signature
	• <u>BP04994</u>
	P99.1.4994 KINASE DEHYDROGENASE PYRUVATE L BP02447
	p99.1.2447 PROTEIN KINASE SENSOR SENSORY
	• IPB00829
	BP03894
	p99.1.3894 KINASE ACETYLGLUTAMATE DEHYDROGENASE T
	<u>PF01633</u> Chaline kinase Chaline/ethanologine kinase
	PR01469
	CARBMTKINASE Bacterial carbamate kinase signature
	FAD Synth Riboflavin kinase / FAD synthetase
	• <u>PR01100</u>
	SHIKIMTKNASE Shikimate kinase family signature PR00206
	CYCLINKINASE Cyclin-dependent kinase regulatory subunit signature
	IPB00623 IVI Studie to the set
	• PR00958
	HOMSERKINASE Homoserine kinase signature
	• IPB000789 CKS Cyclin, dependent kingge, regulatory subunit
	PR00472
	CASNKINASEII Casein kinase II regulatory subunit family signature
	ACETATEKNASE A cetate kinase family signature
EMBL	
European Bioinformatics Institute	P99.1.1519 KINASE THYMIDINE TRANSFERASE DNA SYNTHESIS AT IPB000062
European Dioimonnaics institute	THYMIDYLATE_KINASE Thymidylate kinase
	• <u>PR00991</u>

IPB000829: DAGK prokar Prokaryotic diacylglycerol kinase Introduction Block number IPB000829A Block number IPB000829B Block number IPB000829C <u>COBBLER sequence</u> and BLAST searches [<u>About COBBLER</u>] LAMA search of all blocks vs a blocks database [About LAMA] MAST Search of all blocks vs a sequence database [About MAST] CODEHOP to design PCR primers from blocks [About CODEHOP] Logos.[About Logos] Select display format: [GIF] [PDF] [Postscript] Block Map [About Maps] Tree from Blocks alignment. [About Trees] [About ProWeb Display] Select display format: [Data] [XBitmap] [GIF] [PDF] [Postscript] [Newick] [ProWeb] InterPro entry IPR000829 (source of sequences used to make blocks) Additional Links Introduction Blocks Database Version 12.0, June 2000 Copyright 2000 by Fred Hutchinson Cancer Research Center 1100 Fairview AV N, Seattle, WA 98109, USA Please cite: S Henikoff & JG Henikoff (1991) Automated assembly of protein blocks for database searching, Nucleic Acids Res. 19:6565-6572. Blocks made by PROTOMAT for protein families documented in InterPro 1.0 and SWISS-PROT 38: PROSITE patterns were not used. ID, AC and DE are adapted from prosite.dat; BL is PROTOMAT information. For each segment, the sequence ID is followed by the position of the first residue in the segment. Segments are clustered if >=80% of aligned residues match between any pair of segments. Sequence weights are shown to the right of each segment. The higher the weight the more dissimilar the segment is from other segments in the block. These weights were obtained using the position-based method of S Henikoff & JG Henikoff (1994). JMB 243:574-578.

Block IPB000829A

ID DAGK_prokar;	BLOCK		
AC IPB000829A; d	listance	from previous block=(2,57)	
BL GFR: width=4	liacyigi U: sens	yceroi kinase =9: 99.5%=1974: strength=1159	
KDGL HELPY P56411	(15)	RLFKALFYSKDGLKCAWIEESAFRQIVILALFCIVLASYLA	53
Q9ZLE0	(15)	RLFKALFYSKDGLKCAWAEESAFRQIVILALFCIVLASYLT	54
KDGL_PSEDE P29945	(23)	RHLFAAASYSLGGAKRLIGEAAFRHELIAFAAAMIAFIIVG	65
KDGL_RHIME Q06119	(23)	RHLFAAASYSFGGAKRLIGEAAFRHELIAFAVAMVAFMIVG	67
KDGL_ECOLI POO556	(9)	$\tt RIIKAAGYSWKGLRAAWINEAAFRQEGVAVLLAVVIACWLD$	72
KDGL_HAEIN P44424	(9)	${\tt HLINSTKYSLQGLKSAFKNETAFRHECFLACILIPLTFFLG}$	82
KDGL_STRMU Q05888	(19)	${\tt TLTSSLEFALTGIFTAFKEERNMKKHAVSALLAVIAGLVFK}$	100
KDGL_SYNY31Q55143	(58)	NLLVSFRYAWAGVSYAFATQRNFRIHTFTGVAVITAASLLH	94
KDGL_BACSU P19638	(3)	RFFKSFVHAGRGIWETARTERNFQFHAAAAACAVLICGFLVE	99
[Return to top]			
Block IPB000829E	3		
ID DAGK_prokar;	BLOCK	for an amort and his she (10, 10)	
AC IPDUUU029D; G DF Probaryotic d	liscance lisculul	rrom previous block=(10,19) vcerol kipase	
BL EED: width=1	.2: seas	=9: 99.5%=687: strength=1117	
KDGL HELPY P56411	(75)	ELINSSIEKAVD 88	
Q9ZLEO	(75)	ELINSSIEKAVD 88	
KDGL_ECOLI POO556	(69)	EILNSAIEAVVD 83	
KDGL_HAEIN P44424	(69)	ELLNSAVETVVD 96	
KDGL_STRMU Q05888	(79)	EIVNSAIENVVD 100	
KDGL_SYNY3 Q55143	(118)	ELLNTALESVVD 97	
KDGL_BACS0/P19638	(63)	ELENIAIEHIAD AT	
KDGL PSEDE P29945	(83)	EAINTAIEEIVD 84	
KDGL RHIME 006119	(83)	EAINTAIEEIVD 84	
//	,,		
[Return to top]			
Block IPB0008290			
ID DAGK_prokar;	BLOCK		
AC IPB000829C; d	listance	from previous block=(1,19)	
DE Prokaryotic d	liacylgl	ycerol kinase	
BL GLA; width=1	l; seqs	=9; 99.5%=623; strength=919	
KDGL_HELPY P56411	(89)	GTEFHPLAKKA 36 CTEFHPLAKKA 36	
037770	(89)	GILFHFLAKKA 30	

Block Searcher Results

Go to hits

Introduction

BLKPROB Version 5/21/00.1 Database=../data-blplus/blocks.dat

EMBL

Here are your search results. The database searched was Blocks+ (15 Nov 00) which includes: BLOCKS 12.0 consisting of 4071 blocks representing 998 groups documented in InterPro 1.0/PROSITE, plus 3479 blocks from 553 groups documented in PRINTS 28.0 but not represented in BLOCKS, plus 2335 blocks from 559 groups

European Bioinformatics Institute

Size=735 Amino Acids Blocks Searched=11117 Alignments Done= 8443048 Cutoff combined expected value for hits= 1 Cutoff block expected value for repeats/other= 1 Family Strand Blocks PF00609 Diacylglycerol kinase accessory dom 1 8 of 8 4.3e-158 IPB002219 Phorbol esters/diacylglycerol bindi 1 PR01362 Flagellar calcium-binding protein (1 1 of 9 IPB001604 DNA/RNA non-specific endonuclease 1 of 5 1 _____ >PF00609 8/8 blocks Combined E-value=4.3e-158: Diacylglycerol kinase accessory domain (presumed) Block Frame Location (aa) Block E-value PF00609A 0 299-305 0.0011 PF00609B 0 319-331 5.9e-09 PF00609C 376-414 3.3e-33 0 PF00609D 0 428-442 3.5e-12 PF00609E 0 454-477 2.7e-23 PF00609F 0 522-558 9e-35 PF00609G 0 595-610 7.5e-10 PF00609H 0 694-720 1.9e-23 Other reported alignments: |--- 512 amino acids---| PF00609 A:..B:.....FF::G::...H Unknown PF00609A <->A (21,694):298 KDGA HUMAN | P23743 299 HCVWCHL 1111111

Combined

E-value

1.5e-18

0.2

0.57

4 of 5

Unknown	299	HCVWCHL
PF00609B	A<->B	(11,56):13
KDGA_HUMAN P23743	319	CDCGLLRDHILPP
Unknown	319	CDCGLLRDHILPP
PF00609C	B<->C	(21,341):44
KDGA_HUMAN P23743	376	PLLVFVNPKSGGKQGQRVLWKFQYILNPRQVFNLLKDGP
Unknown	376	PLLVFVNPKSGGKQGQRVLWKFQYILNPRQVFNLLKDGP
PF00609D	C<->D	(11,15):13
KDGA_HUMAN P23743	428	RILVCGGDGTVGWIL
Unknown	428	RILVCGGDGTVGWIL

Hits

Query=Unknown Unknown

	>IPB002219 4/5 blocks Combined E-value= 1.5e-18: Phorbol esters/diacylglycerol binding domain Block Frame Location (aa) Block E-value IPB002219A 0 206-222 9.4e-07 IPB002219B 0 231-246 9.3e-07 IPB002219D 0 432-442 0.33 IPB002219D 0 489-498 1.9e+02									
	Op to so repeats ex	i do lepeats expected.								
	Uther reported all;	mments:								
	563 amino acids <u>IPB002219</u> AB:::C:DE Unknown <::::::AB:::::C::D									
	IPB002219A <->A (21,485):205 KDGA_HUMAN P23743 206 HMWRPKRFPRPVYCNLC IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII									
	<u>IPB002219B</u> KDGA_HUMAN P23743	IPB002219B A<->B (5,160):8 KDGA_HUMAN P23743 231 QGLSCNLCKYTVHDQC								
	Unknown	231 B4 26	QGLSCNLCKYTVHDQC							
	IPB002219C B<->C (60,355):185 KDGA_MOUSE 088673 427 CGGDGTVGWVL									
	Unknown	432	CGGDGTVGWIL							
	IPB002219D KDGA_HUMAN P23743 Unknown	C<->D 489 489	(14,580):46 LEMSKVVHMD LEMSKVVHMD							
	>PR01362 1/9 blocks Combined E-value= 0.2: Flagellar calcium-binding protein (calflagin) signatur Block Frame Location (aa) Block E-value PR01362H 0 164-180 0.21 Other reported alignments:									
	79 amino acids <u>PR01362</u> AAAAAAA:::BBBBBB:CCCCCC:DDDDD:EEEEEEFFFFFF::GGGG:HHHHHIIIIII Unknown <::::::::::::::::::::::::::::::::::::									
	PR01362H FCA1_TRYRA Q27052	<->H 166	(166,365):163 FKELDRNGSGSVTFDEF							
	ouknown	104	TTTAGOSOSASdarm							
EMBL European Bioinformatics In	>IPB001604 1/5 bloc Block Frame) IPB001604A 0 Other reported all:	cks Comb: Location 541-56	ined E-value= 0.57: DNA/RNA non-specific endonuclease (aa) Block E-value 57 0.57							

TIGRFAMs

- http://www.tigr.org/TIGRFAMs
- Collection of protein families in HMMs built with curated multiple sequence alignments and with associated functional information
- Equivalog- homologous proteins conserved with respect to function since last ancestor (other pattern databases concentrate on related seq not function)
- > 800 non-overlapping families -can search by text or sequence
- Has information for automatic annotation of function, weighted towards microbial genomes
 EMBL

European Bioinformatics Institute

All Genomes in the CMR: TIGRFAM Search Results

tion protein families

Download

RESEARCH

HMM Search

Text Search

TIGR FAMs Page

fams

CMR Home

Help

TIGRFAMs/HMMs containing pattern "kinase"

The follwing table contains a list of all TIGRFAMs or HMMs with the pattern "kinase" in its name or accession number. Click on the accession number to get to the HMM Profile page on a TIGRFAM. Click on the link below the table to start a new search.

Name	Accession#	Common_Name
6PF2K	PF01591	6-phosphofructo-2-kinase
aakinase	PF00696	Amino acid kinase family
Acetate_kinase	PF00871	Acetokinase family
ackA	TIGR00016	acetate kinase
adenylatekinase	PF00406	Adenylate kinase
APS_kinase	PF01583	Adenylylsulfate kinase
apsK.	TIGR00455	adenylylsulfate kinase
arcC	TIGR00746	carbamate kinase
argB	TIGR00761	acetylglutamate kinase
asp_kin_monofn	TIGR00656	aspartate kinase, monofunctional class
asp_kinases	TIGR00657	aspartate kinase
CDI	PF02234	Cyclin-dependent kinase inhibitor
cdk7	TIGR00570	cdk-activating kinase assembly factor (cdk7)
Choline_kinase	PF01633	Choline/ethanolamine kinase
CK_II_beta	PF01214	Casein kinase II regulatory subunit
CKS	PF01111	Cyclin-dependent kinase regulatory subunit
cmk	TIGR00017	cytidylate kinase
Cytidylate_kin	PF02224	Cytidylate kinase
DAGK_prokar	PF01219	Prokaryotic diacylglycerol kinase

Both TIGRFAMs and Pfams are displayed on this page. TIGRFAMs and Pfams are based on Hidden Markov Models or HMMs. An HMM is a statistical model for any system that can be represented as a succession of transitions between discrete states. Scores are reported both in bits of information and as an E-value. See below for more information on this TIGRFAM or Pfam and its HMM.						Example entry			
ackA Information: See below for detail the average score of genes/proteins in t To view more information on the Role ID	led information on this fa his family. To view all ge for this family, click on	amily, including the cutoff score f enes with the same EC number, the Role ID link.	or inclusion in t click on the EC	his family and Number link.					
TIGRFAM Name: acetate kinase Accession: TIGR00016 Trusted Cutoff: 300 00	Isology Type: a Author(s): Rich: Ave: Score: 94	equivalog ardson DL 3 33 +/- 19 2	HMM type: T(HMM length: Noise Cutoff:	DGA 416 30.00					
EC Number: 2.7.2.1 Created: Apr 20 1999 2:05PM References: PROSITE: PDOC00826	Role ID: <u>102</u> Last Modified:	Mar 8 2001 2:32PM	holde earon.	ielow are the curr ein report for a pa	ent members articular memb	Members of the ac of this HMM, including those not per of this family.	KA HMM		
Source: TIGR Alignment source: clustalw				PROTEIN I	D	COORDINATES	DATABASE		
Comments: function: involved in the ac	tivation of acetate to ac	etyl CoA and the secretion of active theosis of most of the ATP former	etate, during an A catabolically (CMR: NT01BS	3432	37-433	TIGR - CMR		
catalytic activity: ATP + acetate = ADF	^o + acetyl phosphate, si	ubcellular location: cytoplasmic.	i catabolicaliy (SP: <u>P37877</u>		1-395	SWISS-PROT/TrEMBL		
				CMR: NT01EC2743		1-400	TIGR - CMR		
Display Hits and Overlaps: To view all	CMR proteins that are	members of this HMM, click on <i>i</i>	All CMR Hits. T	CMR: HI1204		1-401	TIGR - CMR		
overlapping HMMs, click on Any overla	apping HMMs?			GP: 1359437 CMR: NT01SS0762 SP: P73162		1-400	GenBank		
						11-418	TIGR - CMR		
All CMR Hi	ts to TIGR00016	Any Overlapping HMMs?				1-405	SWISS-PROT/TrEMBL		
				CMR: BB06	22	6-410	TIGR - CMR		
Alignment Display View a multiple sy	etain alignment dianlau	for this UMMA. Choose to visuath	a Whith a lignma	CMR: NT01MP	0391	1-389	TIGR - CMR		
FASTA or MSF format and then depres	s the submit button bel	ow. Depress the JalView button	i to start a prote	SP: 05156	1	1-402	SWISS-PROT/TrEMBL		
program. This program allows the user	to view the alignment in	different ways (i.e. highlight the	identical and si	SP: P4759	9	1-389	SWISS-PROT/TrEMBL		
acids in the alignment).				SP: P1186	8	2-394	SWISS-PROT/TrEMBL		
MSF TIGRFAM Alignment 💽 Submit					3702	6-398	TIGR - CMR		
labieu friewer alianment preason	.			GP: 101758	15	1-391	GenBank		
Jaiview (viewer alignment program):				CMR: VC10	98	1-397	TIGR - CMR		
	1alV	iow		GP: 300612	4	1-397	GenBank		
	Jaiv			SP: 05933	1	1-397	SWISS-PROT/TrEMBL		
				CMR: TM02	74	1-399	TIGR - CMR		

HMM Profile Page Accession #: TIGR00016 Name: ackA

hmmpfam - search a single seq against HMM database HMMER 2.1.1 (Dec 1998) Copyright (C) 1992-1998 Washington University School of Medicine HMMER is freely distributed under the GNU General Public License (GPL).	
HMM file: ALL_LIB_bin.HMM Sequence file: hmmpfam-search-23339-990483518.in	C.
Query: query sequence	σ.
Scores for sequence family classification (score includes all domains): Model Description Score E-value 	
TIGR00016 ackA: acetate kinase 963.8 4.5e-286 PF00871 Acetate_kinase: Acetokinase family 872.6 1.2e-258	
Parsed for domains: Model Domain seq-f seq-t hmm-f hmm-t score E-value	
PF00871 1/1 3 388 1 397 [] 872.6 1.2e-258 TIGR00016 1/1 1 395 [] 1 416 [] 963.8 4.5e-286	
Alignments of top-scoring domains: PF00871: domain 1 of 1, from 3 to 388: score 872.6, E = 1.2e-258 *->kiLviNaGSSS1Kfq1fdakkaegeevlasGLaErigidnarilqkv ki+ iNaGSSS1Kfq1f++++ e+vl++GL+Erigi+++++++	
query 3 RIIAINAGSSSLRFQLFEMPSETVLTKGLVERIGIADSVFTIS- 45 nggkKieektaiadHeeAlkhilntLkesdfgvikdlseIdAvGHRvVhG ++g+K++e t+i+dH+ A+k++ln+L+ +fg+ikdl+eId++GHRvVhG	
query 46 VNGEKNTEVTDIPDHAVAVKMLLNKLTEFGIIKDLNEIDGIGHRVVHG 93 GekFtesvlitdevieaIkdlieLAPLHNpAniiGIeiadkllppvkdkn	
CekF++svl+tde+i++I+d++eLAPLHNpAni+GI+++++1p+v+ + query 94 GEKFSDSVLLTDETIKEIEDISELAPLHNPANIVGIKAFKEVLPNVPA 141	
VAVFDTaFHqTmPeeAyLYalPyelyeehGiRRYGFHGTSHkYVaqraak VAVFDTaFHqTmPe++yLY+1Pye+ye++GiR+YGFHGTSHkYV++raa+	
query 142 VAVFDTAFHQTMPEQSTETSEPTETTERFGTRRTGFHGTSHRTVTERARE 191	
+Lg+pl+dl+lI cHLGNGaSiaAv++Gks+DTSMGfTPL+G++MGTRSG query 192 LLGRPLKDLRLISCHLGNGASIAAVEGGKSIDTSMGFTPLAGVAMGTRSG 241	
dIDPaivvyLaeteglSadBivnlLNKKSGlLGlsGlsSDlRdvedaiee +IDPa ++y++e++g++adB+ n+LNKKSGlLG+sG+sSDlRd+++a++e	
query 242 NIDPALIPYIMEKTGQTADEVLNTLNKKSGLLGISGFSSDLRDIVEATKE 291	

ROOOl6: domain l of l, from l to 395: score 963.8, E = 4.5e-286 *->meskkiLviNaGSSS1KFalfdaenDRLgekvPePLlsGLvErifla ++ki++iNaGSSS1KF+1f+++ +e+v L++GLvErif+a

Sequence search result

		++ki++iNaGSSSlKF+lf+++ +e+v L++GLvBri++a	
query	1	MSKIIAINAGSSSLKFQLFEMPSETVLTKGLVERIGIA	38
		nariktvnenggkkeeellaiadHqeAvkfilntLtnqsdkkTikllseI	
		++ ++t+ +++g+k++e+++i+dH++Avk++ln+Lt +++Iik+l+eI	
query	39	DS-VFTI-SVNGEKNTEVTDIPDHAVAVKMLLNKLTEFGIIKDLNEI	83
		dlIGHRVVHGGekftdSViitdevikkIkdiseLAPLHNpAhldGIEaal	
		d+IGHRVVHGGekf+dSV++tde+ik+I+diseLAPLHNpA+++GI+a++	
query	84	DGIGHRVVHGGEKFSDSVLLTDETIKEIEDISELAPLHNPANIVGIKAFK	133
		klkvlpkaKnVAVFDTaFHqTiPeeaYLYAlPyswYkehGiRRYGFHGTS	
		+vlp++++VAVFDTaFHqT+Pe++YLY+1Py++Y++GiR+YGFHGTS	
query	134	EVLPNVPAVAVFDTAFHQTMPEQSYLYSLPYEYYEKFGIRKYGFHGTS	181
		HkYvtqraaklLNKplddLnLIvCHLGNGASvcAvkNGkSiDTSMGfTPL	
		HkYvt+raa+1L++p1+dL+LI+CHLGNGAS++Av++GkSiDTSMGfTPL	
query	182	HKYVTERAAELLGRPLKDLRLISCHLGNGASIAAVEGGKSIDTSMGFTPL	231
		EGLvMGTRSGDIDPAIisylaetlgmSaddientLNKkSGLLGisGlSSD	
		+G++MGTRSG+IDPA+i+y++e++g++ad+++ntLNKkSGLLGisG+SSD	
query	232	AGVAMGTRSGNIDPALIPYIMEKTGQTADEVLNTLNKKSGLLGISGFSSD	281
		lRdiedayeEgneqAklAikvYvhRiakYIGsYiAsLegnrlDaiVFTGG	
		lRdi++a++Egne+A++A++v+++Ri+kYIGsY+A+++g +Dai+FT+G	
query	282	LRDIVEATKEGNERAETALEVFASRIHKYIGSYAARMSGVDAIIFTAG	329
		IGENaaevkeLviegievLGielDpelNnaaqrsgkesviStpnSkvkii	
		IGEN++evRe+vI+gIe++G+++Dp+INn ++g+e++IS+p+S+vR++	0.00
query	330	IGENSVEVRERVLRGLEFMGVIWDPALNNVRGEEAFISIPHSPVRVM	376
	277		
query	377	TTEIDEDUITERDVVKDAR 373	

PIR-ALN

- http://www-nbrf.georgetown.edu/pirwww/ search/textpiraln.html
- Database of annotated protein sequence alignments derived automatically from PIR PSD
- Includes alignments at superfamily (whole sequence), family (45% identity) and domain (in more than one superfamily) levels
- 3983 alignments, 1480 superfamilies, 371 domains
- Can search by protein accession number or text

EMBL European Bioinformatics Institute

PROTOMAP

- http://www.protomap.cs.huji.ac.il
- Automatic classification of all SWISS-PROT proteins into groups of related proteins (also including TrEMBL now)
- Based on pairwise similarities
- Has hierarchical organisation for sub- and super-family distinctions
- 13 354 clusters, $5869 \ge 2$ proteins, $1403 \ge 10$
- Keeps SP annotation eg description, keywords
- Can search with a sequence -classify it into existing clusters

DOMO

- http://www.infobiogen.fr/srs6bin/cgi-bin/wgetz?page+LibInfo+-lib+DOMO (SRS)
- Database of gapped multiple sequence alignments from SWISS-PROT and PIR
- Domain boundaries inferred automatically, rather than from 3D data
- Has 8877 alignments, 99058 domains, and repeats
- Each entry is one homologous domain, has annotation on related proteins, functional families, evolutionary tree etc

ProClass

- http://pir.georgetown.edu/gfserver/proclass.html
- Non-redundant protein database organized by family relationships defined by Prosite patterns and PIR superfamilies.
- Facilitates protein family information retrieval, domain and family relationships, and classifies multi-domain proteins
- Contains 155,868 sequence entries

SBASE (Agricultural Biotechnology Centre)

- http://sbase.abc.hu/main.html
- Protein domain library from clustering of functional and structural domains
- SBASE entries grouped by Standard names (SN groups) that designate various functional and structural domains of protein sequences- relies on good annotation of domains
- Detects subclasses too
- Can do similarity search with BLAST or PSI-BLAST

EMBL European Bioinformatics Institute

Integrating Pattern databases

- MetaFam
- IProClass
- CDD
- InterPro

METAFAM

- http://metafam.ahc.umn.edu/
- Protein family classification built with Blocks+, DOMO, Pfam, PIR-ALN, PRINTS, Prosite, ProDom, SBASE, SYSTERS
- Automatically create supersets of overlapping families using set-theory to compare databases-reference domains covering total area
- Use non-redundant protein set from SPTR & PIR

IProClass

- http://pir.georgetown.edu/iproclass/
- Integrated database linking ProClass, PIR-ALN, Prosite, Pfam and Blocks
- Contains >20000 non-redundant SP & PIR proteins, 28000 superfamilies, 2600 domains, 1300 motifs, 280 PTMs
- Can be searched by text or sequence

CDD Conserved Domain Database

- http://www.ncbi.nlm.nih.gov:80/Structure/cdd/cdd.shtml
- Database of domains derived from SMART, Pfam and contributions from NCBI (LOAD)
- Uses reverse position-specific BLAST (matrix)
- Links to proteins in Entrez and 3D structure
- Stand-alone version of RPS-BLAST at: ftp://ncbi.nlm.nih.gov/toolbox

	S NCBI	
	PubMed	BLAST OMIM Taxonomy Entrez Structure
	Search Entrez Struc	sture 🔽 for Go
	CDD Help	A Conserved Domain Database and Search Service, v1.51
	Help on CD-Search and Databases CD. Search	Proteins often contain several modules or domains, each with a distinct evolutionary origin and function. The CD-Search service may be used to identify the conserved domains present in a protein sequence:
	Search with advanced options	Run CD-Search: Search Database: All - 3347 PSSMs Enter query as Protein Sequence in FASTA format Submit Query
	Domain Architecture Retrieval Tool Smart Pfam: US / UK	
	Explore CDD's source databases MMDB NCBI's structure database Cn3D v3.0 3D-structure viewer	Read about FASTA format description, click here for advanced options. Computational biologists define conserved domains based on recurring sequence patterns or motifs. CDD currently contains domains derived from two popular collections, Smart and Pfam, plus contributions from colleagues at NCBI. The source databases also provide descriptions and links to citations. Since conserved domains correspond to compact structural units, CDs contain links to 3D-structure via Cn3D whenever possible.
EMBL European	VAST Structure comparisons	To identify conserved domains in a protein sequence, the CD-Search service employs the reverse position-specific <u>BLAST</u> algorithm. The query sequence is compared to a position-specific score matrix prepared from the underlying conserved domain alignment. Hits may be

CDD homepage

NCBI		CD-Search Entrez ?	1					
RPS-BLA	ST 2.	2.1 [Apr-13-2001]						CDD Cooroh
Query=	local (39	. sequence: 10 letters)						CDD Search
Databas	e : oa 3	sis_sap.vl.51 347 PSSMs; 659,460 total columns						result
		Mouse-over boxes to display more info	rmation	L				
		1 50 100 150 200	2	50 1	300	350	390	
		7ti	n_1					
NEW. Sh	10W 0	ther proteins containing these domains						
PSSMs p	roduci	ing significant alignments:	Score (bits)	E value				
<u>gnl Pfam</u>	<u>pfam0(</u>	0001 7tm_1, 7 transmembrane receptor (rhodopsin family)	<u>184</u>	7e-48				
gnllPfamlt	pfam00	0001, 7tm_1, 7 transmembrane receptor (rhodopsin family).						
Add que	ery to 1	multiple alignment, display up to 10 💽 sequences most similar to the query	•					
		CD-Length = 254 residues, 99.6% aligned Score = 184 bits (467), Expect = 7e-48						
Query: Sbjct:	67 2	NAFVIATVYRTRKLHTPANYLIASLAVTDLLVSILVMPISTMYTVTGRWTLGQVVCDFWI NLLVILVILRTKKLRTPTNIFLLNLAVADLLFLLTLPPWALYYLVGGDWVFGDALCKLVG	. 126 ; 61					
Query: Sbjct:	127 62	SSDITCCTASILHLCVIALDRYWAITDAVBYSAKRTPKRAAVMIALVWVFSISISLPPFF ALFVVNGYASILLLTAISIDRYLAIVHPLRYRRIRTPRRAKVLILLVWVLALLLSLPPLI	, 186 , 121					
Query: Sbjct:	187 122	WRQAKABEBEVSECVVNTDHILYTVYSTVGAFYFPTLLLIALYGRIYVBARS <mark>RI</mark> LKQTF FSWLRTVBEGNTTVCLIDFPEESVKRSYVLLSTLVGFVLPLLVILVCYT <mark>RIL</mark> R) 244 - 174					
Query: Sbjct:	245 175	NRTCKRLTRAQLITDSPCSTSSVTSINSRVPDVPSESCSPVYVNQVKVRVSDALLEKKKL TLRKRARSQRSLKF	, 304 2 188					
Query: Sbjct:	305 189	MAARERKATKTLGIILGAFIVCWLPFFIISLVMPICKDACW-FHLAIFDFFTWLGYLNSI RSSSERKAAKMLLVVVVVFVLCWLPYHIVLLLDSLCLLSIWRVLPTALLITLWLAYVNSC	, 363 ; 248					

DART: Domain Architecture Retrieval Tool

7tm_1, 7 transmembrane receptor (rhodopsin family).

Subset by selected domains:

pfam00001

CD-Browser

Entrez ?

CD: ACTIN

Description:	Actin; ACTIN subfamily of ACTIN/mreB/sugarkinase/Hsp70 superfamily
CD status:	Full-length sequences, including 3D structure if known. Alignment from source, reindexed to representative
Source:	Smart
Created:	24-Apr-2001
Faxonomy spanned:	<u>Eukaryota</u> -> [3] from <u>Alveolata</u> [1] from <u>Diplomonadida</u> [20] from <u>Fungi/Metazoa group</u> [1] from <u>Mycetozoa</u> [2] from <u>Viridiplantae</u>
Aligned sequences:	28
Representative:	Consensus sequence:
Aligned range:	1-374
Sequence:	TPAIVIDNCSCTIKACFACEDFPQVVFPSIVCRPKDCKCMVGDAKDTFVGDEAQEKRGGL ELKYPIEHGIVENWDDMEKIWDYTFFNELKVEPEEHPVLLTEPPLNPKSNREKILEIMFE EFNFPALYIAIQAVLSLYASGGRTTGLVIDSCDGVTHVVPVVDGYVLPHAIKRIDIAGRD LTDYLKELLSERGYQFNSSAEFEIVREIKEKLCYVAEDFEKEMKKARESSESSKLTKTYE LPDGNTIKVCNERFRIPEILFSPELIGLEQKGIHELVYESIQKCDIDVRKDLYENIVLSG GSTLIPGFGERLEKELKRLAPKKLKVKVIAPPDRKYAVWLGGSILASLSTFEDMWISKKE YEEHGSQIVERKCF

This CD alignment includes 3D structure. To display structure, download Cn3D v3.0!

View Alignment	showing up to 10 🖉	top listed sequences	Reset
 Aligned chains All chains Virtual Bonds 	 Launch Cn3D HTML Display Text Display 	 C FASTA with gaps C Phylip format C See ASN.1 file 	Conservation color threshold: 2.0 bits 💌 Alignment width: 60 💌

C All Atoms

	pick aligned sequences (will be added to selection above)						
3D PDB-Id/gi Definition							
	۲	1DGA A	Chain A, Structure Of Dictyostelium Discoideum Actin Complexed With Mg Atp And Human Gelsolin Segment 1. [CD]				
	6322380		charomyces cerevisiae chromosome X, complete chromosome sequence [CD]				
□ <u>113295</u>		5	ACTIN, CYTOPLASMIC [CD]				
□ <u>1168336</u>		1168336 ACTIN II (CENTRACTIN-LIKE PROTEIN) [CD]					
	<u>17031</u>	55	ACTIN [CD]				

NCBI

	□ 1: <u>NP_012</u>	54.8 kDa actin-related protein; Arp4p [Saccharomyces cerevisiae]			
	1.00110				
	DEFINITION	NP_012454 489 aa PLN 30-APR-2001			
	ACCRECTON	ND 012454			
	DID	MF_012434 ~£222290			
	URDSTON	WD 012454 1 CT-6322380			
	DBSOUDCE	NF_012404.1 01.0022000			
	KRYMORDS	ABIDAQ: ACCESSION <u>NO_COTTAC.</u>			
	SOURCE	baker's veast.			
	ORGANISM	Saccharomyces cerevisiae			
		Eukaryota; Fungi; Asconycota; Saccharomycetes; Saccharomycetales;			
		Saccharomycetaceae; Saccharomyces.			
	REFERENCE	1 (residues 1 to 489)			
	AUTHORS	Galibert,F., Alexandraki,D., Baur,A., Boles,E., Chalwatzis,N.,			
		Chuat, J.C., Coster, F., Cziepluch, C., De Haan, M., Domdey, H.,			
		Durand, P., Entian, K.D., Gatius, M., Goffeau, A., Grivell, L.A.,			
		Hennemann, A., Herbert, C.J., Heumann, K., Hilger, F., Hollenberg, C.P.,			
		Huang,M.E., Jacq,C., Jauniaux,J.C., Katsoulou,C.,			
		Karpfinger-Hartl,L. et al.			
	TITLE	Complete nucleotide sequence of Saccharomyces cerevisiae chromosome			
		X			
	JUURNAL	KMBU J. IS (9), 2031-2049 (1996)			
	MEDLINE	<u>96208490</u>			
	AUTHODS	2 (residues 1 co 407) Coffeen & Berrell B.C. Bussey M. Dewis B.M. Dujer B.			
	AUTHORS	Feldmann,H., Galibert,F., Hoheisel,J.D., Jacq,C., Johnston,M., Louis,E.J., Mewes,H.W., Murakami,Y., Philippsen,P., Tettelin,H. and			
	TITLE	Life with 6000 genes			
	JOURNAL	Science 274 (5287). 546 (1996)			
	MEDLINE	97002444			
	REFERENCE	3 (residues 1 to 489)			
	AUTHORS	Saccharomyces Genome Database (yeast-curator@genome.stanford.edu).			
	TITLE	Direct Submission			
	JOURNAL	Submitted (17-NOV-1999) Department of Genetics, Stanford			
		University, Saccharomyces Genome Database, Stanford, CA 94305-5120, USA			
	COMMENT	REFSEQ: This reference sequence was provided by the Saccharomyces			
		Genome Database (SGD).			
		Method: conceptual translation.			
	FEATURES	Location/Qualifiers			
	source	1489			
		/organism="Saccharomyces cerevisiae"			
		/strain="S288C"			
	/db_xref="taxon:4932"				
EMBL	-	/chromosome="X"			
	Protein	n 1489			
European		/product="54.8 kDa actin-related protein" (not of "dyn4n"			
	CDC	/note="Arp4p"			
	CDS	1407			

PIR link from CDD

INTERPRO

- http://www.ebi.ac.uk/interpro
- Integration of different signature recognition methods (PROSITE, PRINTS, PFAM, ProDom and SMART)

InterPro release 3

- Built from PROSITE, PRINTS, Pfam, ProDom, SMART, SWISS-PROT and TrEMBL
- Contains 3915 entries encoded by 7714 different regular expressions, profiles, fingerprints, Hidden Markov Models and ProDom domains
- InterPro provides >1 million InterPro matches hits against 532403 SWISS-PROT + TrEMBL protein sequences (68% coverage)
- Direct access to the underlying Oracle database
- A XML flatfile is available at ftp://ftp.ebi.ac.uk/pub/databases/interpro/
- SRS implementation
- Text- and sequence-based searches

EMBL European Bioinformatics Institute

InterPro Home
<u>Text Search</u>
<u>Databases</u>
Documentation
<u>FTP Site</u>
Sequence Search

InterPro Home

Upcoming events, new documents.

- InterPro Workshop Announcement
- InterPro Paper in NAR (Adobe PDF format)
- List of InterPro to GO mappings

InterPro release 3.1 (May 2001) was built from <u>Pfam</u> 6.0, <u>PRINTS</u> 30.0, <u>PROSITE</u> 16.35, <u>ProDom</u> 2001.1, <u>SMART</u> 3.1 and the current <u>SWISS-PROT + TrEMBL</u> data. This release of InterPro contains 3915 entries, representing 991 domains, 2845 families, 64 repeats and 15 post-translational modification sites.

InterPro is a useful resource for whole genome analysis and has already been used for the proteome analysis of a number of completely sequenced organisms. A *preliminary* proteome analysis was also produced for the human genome. Please refer to the <u>proteome analysis</u> pages.

Further information on InterPro can be found in the <u>Documentation</u> page, which includes links to the <u>release notes</u>, the <u>user manual</u>, <u>a list of deleted InterPro entries</u>, the <u>dataflow scheme</u> of the database, a fully annotated <u>sample entry</u> and <u>references</u> for the <u>member databases</u>. For publications please cite:

R.Apweiler, T.K.Attwood, A.Bairoch, A.Bateman, E.Birney, M.Biswas, P.Bucher, L.Cerutti, F.Corpet, M.D.R.Croning, R.Durbin, L.Falquet, W.Fleischmann, J.Gouzy, H.Hermjakob, N.Hulo, I.Jonassen, D.Kahn, A.Kanapin, Y.Karavidopoulou, R.Lopez, B.Marx, N.J.Mulder, T.M.Oinn, M.Pagni, F.Servant, C.J.A.Sigrist, E.M.Zdobnov.

The InterPro database, an integrated documentation resource for protein families, domains and functional sites, Nucleic Acids Research vol 29(1):37-40.

For information, comments and / or suggestions on the InterPro database, please email us at interhelp@ebi.ac.uk

InterPro

InterPro Home	InterPro Text Searches							
Text Search	This page allows you to search the InterPro database by keyword. If you are looking for							
<u>Databases</u>	somewhere to locate patterns in your protein sequence, use the 'Sequence Search' link to							
Documentation	Oracle Search - Simple, but Fast!							
<u>FTP Site</u>	You can use this search box to search for InterPro. Pfam. PRINTS, Prosite, ProDom.							
Sequence Search	SWISS-PROT, TrEMBL accession numbers and names, database names, and entry_types. You may combine more than one search term with 'AND', '&', 'OR', ' ', 'NOT' and '!'; you may also use wildcarded expressions (eg. bar*).							
	Enter search terms here :							
	human transporter Search							
	SRS Searches The SRS search system allows more complex queries, but will take longer to return results to you. Follow <u>this link</u> to go to the main SRS page.							

InterPro Simple Search

You can use this page to search for InterPro, Pfam, PRINTS, Prosite, SWISS-PROT, TrEMBL accession numbers and names, database names, and entry_types. You may combine more than one search term with 'AND', '&', 'OR', '|', 'NOT' and '!'; you may also use wildcarded expressions (eg. bar*).

Enter search terms here...

human transporter

Search

Search resu	Search results for 'human transporter'						
Click on the links below to jump to individual InterPro entries.							
Entry	Entry name						
IPR000076	K-Cl co-transporter						
IPR000622	K-CI Co-transporter type 1 (KCC1)						
IPR000803	Facilitated glucose transporter family						
IPR000849	GlpT family of transporters						
IPR001066	Sugar transporter						
IPR001204	Phosphate transporter family						
IPR001902	Sulfate transporter						
IPR002259	Delayed-early response protein/equilibrative nucleoside transporter						
IPR002293	Permease for amino acids and related compounds, family I						
IPR002435	Noradrenaline neurotransmitter transporter						
IPR002436	Dopamine neurotransmitter transporter						
IPR002437	Serotonin (5-HT) neurotransmitter transporter						

EMBL European Bioinforma

InterPro Entry IPR000803

Facilitated glucose transporter family

Database	InterPro
Accession	IPR000803; Gluc_transporter (matches 65 proteins)
Name	Facilitated glucose transporter family
Туре	Family 💷
Dates	08-OCT-1999 (created) 02-MAR-2000 (last modified)
Signatures	PR00172; GLUCTRNSPORT (91 proteins)
<u>Parent</u> [tree]	I <u>PR003663;</u> Sugar transporters (250 proteins)
<u>Children</u> (1) [tree]	IPR002439; Glucose transporter type 1 (GLUT1) (8 proteins) IPR002440; Glucose transporter type 2 (GLUT2) (5 proteins) IPR002441; Glucose transporter type 4 (GLUT4) (9 proteins) IPR002442; Fructose transporter (GLUT5) (5 proteins) IPR002945; Glucose transporter type 3 (GLUT3) (7 proteins)
Process 💷	transport (<u>GO:0006810</u>)
Function 🕘	glucose transporter (<u>GO:0005355</u>)
<u>Component</u> 🙆	membrane fraction (<u>GO:0005624</u>)
Abstract 💿	The ability to transport glucose across the plasma membrane is a feature common to nearly all cells, from simple bacteria through to highly specialised mammalian neurones. Facilitative glucose (and fructose) transport is mediated by members of the GLUT transporter family. These are glycosylated transmembrane (TM) proteins that transport glucose in a passive (i.e., energy-independent) manner. In consequence, they can only transport glucose down its concentration gradient. Currently, five such mammalian transporters have been cloned and functionally characterised [1, 2, 3]. Four of these transport glucose (GLUT1-4), whereas GLUT5 preferentially transports fructose. A sixth cDNA, encoding an apparent glucose transporter, was cloned but was found to be a pseudo-gene (GLUT6) [4]. Similarly, another cDNA thought to encode a glucose transporter that was targeted to the endoplasmic reticulum was eventually realised to be an experimental cloning artefact (GLUT7) [5]. The five confirmed isoforms are expressed in a tissue and cell-specific manner, and have been found to exhibit distinct kinetic and regulatory properties, presumably reflecting their specific functional roles in these locations. Hydropathy analysis reveals they have 12 presumed TM domains, and that they belong to a much larger 'major facilitator superfamily' of 12 TM transporters that are involved in the transport of a variety

Tree display for IPR000803

The tree below shows the selected InterPro entry, the path to the root of the tree, the immediate children and the immediate children of the selected entry's parent (i.e. the entry's siblings).

To return to the full entry for this accession number, click here.

	The five confirmed isoforms are expressed in a tissue and cell-specific manner, and have been found to exhibit distinct kinetic and regulatory properties, presumably reflecting their specific functional roles in these locations. Hydropathy analysis reveals they have 12 presumed TM domains, and that they belong to a much larger 'major facilitator superfamily' of 12 TM transporters that are involved in the transport of a variety of hexoses and other carbon compounds, including: bacterial sugar-proton symporters (H ⁺ /xylose and H ⁺ /arabinose); bacterial transporters of carboxylic acids and antibiotics; and sugar transporters in various yeast, protozoa and higher plants. Nevertheless, amino acid identity within the superfamily may be as low as ~25% [6, 7]. Besides the 12 presumed TM domains, the most characteristic structural feature of the superfamily is the presence of a five residue motif (RXGRR, where X is any amino acid). In the GLUT transporters, this motif is present in the presumed cytoplasmic loops connecting TM domains 2 with 3, and also 8 with 9. The 12 TM transporter superfamily appears to be structurally unrelated to the Na ⁺ -coupled, Na ⁺ /glucose co-transporters (SGLT1-3) found in the intestine and kidney, which are able to transport glucose against its concentration gradient [8].	
	Comparison of the hydropathy profiles for GLUT1-5 reveals that they are virtually superimposable, despite the fact that their primary structures may differ by up to 60%. Of the presumed TM domains, the fourth, fifth and sixth are the most highly conserved, and conserved residues are also found in the short exofacial loops joining the putative TM regions. The presumed cytoplasmic N- and C-termini, and the extracellular loop between the first and second TM domains, show the greatest divergence, both in terms of primary structure and size.	
Examples	 <u>P46896</u> GTR1_CHICK <u>Q01440</u> GTR1_LEIDO <u>View examples</u> 	
References	 Gould G.W., Bell G.I. Facilitative glucose transporters: an expanding family. Trends Biochem. Sci. 15: 18-23(1990). [MEDLINE:90194363] [PUB00005353] Bell G.I., Burant C.F., Takeda J., Gould G.W. Structure and function of mammalian facilitative sugar transporters. J. Biol. Chem. 268(26): 19161-19164(1993). [MEDLINE:93374885] [PUB00006044] Mueckler M., Caruso C., Baldwin S.A., Panico M., Blench I., Morris H.R., Allard W.J., Liender G.E., Lodish H.F. Sequence and structure of a human glucose transporter. Science 229: 941-945(1985). [MEDLINE:85272595] [PUB00005096] Kayano T., Fukumoto H., Eddy R.C., Fan Y., Byers M.G., Shows T.B., Bell G.I. Evidence for a family of human glucose transporter-like proteins. J. Biol. Chem. 263: 15245-15248(1988). [MEDLINE:89008414] [PUB00002464] Burchell A. A re-evaluation of GLUT 7. Biochem. J. 331: 973(1998). [MEDLINE:99004677] [PUB00006047] Maiden M.C.J., Davis E.O., Baldwin S.A., Moore D.C.M., Henderson P.J.F. Mammalian and bacterial sugar transport proteins are homologous. Nature 325: 641-643(1987). [MEDLINE:87115869] [PUB00003999] Marger M.D., Saier M.H.Jr. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci. 18: 13-20(1993). [MEDLINE:93174450] [PUB00005398] Hediger M.A., Coady M.J., Ikeda T.S., Wright E.M. Expression cloning and cDNA sequencing of the Nat/glucose co-transporter. Nature 330(6146): 379-381(1987). [MEDLINE:98065656] [PUB000005398] 	
Matches 💷	<u>Table all Graphical all Condensed graphical view</u>	

Int	erPro	Help for : graphic key - Nets Graphical match disp The table below shows graphical match display the region on the protein method matches.	ey - Netscape :h display legend shows the colour coding used in the display. The extent of the bars denotes e protein sequence that the selected s.		
InterPro - Prote	ins matching IPR000803	True	Unknown		
Table Graphical Grid shows 10aa in information in the st	tervals, first mark at position 0. Move the mouse over a match to see more atus line of your browser window.	PRINTS PROSITE pattern PROSITE profile			
ltem 21-40 of 91	< <u>12345</u> >	ProDom	n/a		
Protein	Match Display	See also :			
SWISS-PROT GTR2_HUMAN P11168	IPR000803 PR00172 IPR001066 PS00216 IPR001066 PS00217 IPR001066 PS00217 IPR001066 PR00171 IPR001066 PF00083 IPR002440 PR01191		GLUCTRNSPORT SUGAR_TRANSPORT SUGAR_TRANSPORT SUGRTRNSPORT sugar_tr GLUCTRSPORT2		
SWISS-PROT GTR3_HUMAN <u>P11169</u>	IPR000803 PR00172 IPR001066 PS00216 IPR001066 PS00217 IPR001066 PS00217 IPR001066 PS00217 IPR001066 PS00217 IPR001066 PS00217 IPR001066 PS00217		GLUCTRNSPORT SUGAR_TRANSPORT_1 SUGAR_TRANSPORT_2 SUGRTRNSPORT sugar_tr		

InterPro	Help for : table legend - Netscape				
	The single letter codes after the amino acid ranges in this table denote the status of each individual match. Possible values are shown in the table below :				
InterPro - Proteins matching IPR001066	T True				
	F False Positive				
Table <u>Graphical</u>	N False Negative				
U	P Partial				
	? Unknown	•			

Item 401-420 of 1177

< Previous 21 22 23 24 25 Next >

	PS00216	PS00217	PR00171	PF00083
P39637 YWFA_BACSU				19-406 T
P39843 BMR2_BACSU	65-81 T			17-398 T
P39850 CAPA_STAAU		175-200 F		
P39924 HXTC_YEAST	370-387 T	169-194 T	68-78 T 164-183 T 328-338 T 423-444 T 446-458 T	60-521 T
P39932 STL1_YEAST	347-364 T	N		30-488 T
P40441 YIR0_YEAST	263-280 T	62-87 T		2-416 T
P40474 YIM1_YEAST	117-133 F			61-539 T
P40475 YIM0_YEAST	125-141 F			71-547 T
P40862 PROP_SALTY	P	P		
P40885 HXT9_YEAST	373-390 T	172-197 T	72-82 T 167-186 T 331-341 T	64-526 T

Proteins belonging to InterPro entry IPR003662(IPR000803)

EMBL

EMB Euro

Inter Day I Leave							
InterPro Home	InterProScan						
<u>Text Search</u>	This form allows you to query your protein sequence against InterPro. If you wish to use this facility						
<u>Databases</u>	during a course, or if you have any problems or suggestions, then please contact at						
Documentation	1 Pretein Servence						
FTP Site	1. Protein Sequence						
Sequence Search	Please either enter (or cut and paste) your protein sequence into the text box below, or, if you have the sequence in a file on your computer, click the 'Browse' button to upload it directly (you will be given a file selection window if you choose this option). If you need help on sequence formats, this page details various common formats.						
	Enter or cut and paste protein sequence here						
	or upload sequence from a local file Browse						
	2. Query Mode						
	You can aither wait for the coarch results to be returned in the web browser window, or chasses to						
	have them sent to your email address on completion. The latter may be useful, as some searches will take a considerable time to complete.						

InterProScan

- PROSITE patterns: ppsearch
- PROSITE profiles: pfscan
- PFAM HMMs: hmmpfam
- PRINTS fingerprints: fpscan
- ProDom
- SMART
- eMotif derived PROSITE pattern
- TMHMM
- SignalP

InterPro search Results.

1 Query Sequence <u>submitted</u> Length 210 aa.

<u>InterPro</u>	Results of PPsearch against PROSITE	Results of PFScan against PROSITE	Results of FingerPRINTScan against PRINTS	Results of HMMDecypher against PFAM-A
IPR000595 Cyclic nucleotide-binding domain	<u>PS00888</u> [30-46] <u>PS00889</u> [71-89]	<u>PS50042</u> [24-124]		<u>PF00027</u> [18-112]
IPR001808 Bacterial regulatory proteins, Crp family	<u>PS00042</u> [168-191]		PR00034 [166-183] [182-198]	<u>PF00325</u> [166-197]

IPR000595	PS00888 CNMP_BINDING_1	Cyclic nucleotide-binding domain
	PS00889 CNMP_BINDING_2	
	PS50042 CNMP_BINDING_3	
	PF00027 — cNMP_binding	
IPR001808	PS00042 HTH_CRP_FAMILY	Bacterial regulatory proteins, Crp family
	PR00034 HTHCRP	
	<u>PF00325</u> crp	

XML / TXT formatted.

PRINTS detailed results

1TBS

ANX3_MOUSE

Annexin type III

1TBH	ANNEXINIII	4.3	2579'	72e-	-88 Anı	nexin typ	pe III sign	natu	ıre		
1TBH	ANNEXIN	1.0	0177	64e-	-65 Anı	nexin fam	nily signat	ture	:		
1TBH	ANNEXINV	8.0	0207.	15e-	-56 Anı	nexin typ	pe V signat	ture	:		
1TBH	ANNEXINIV	4.3	2020:	39e-	-55 Ani	nexin typ	pe IV signa	atur	e		
1TBH	ANNEXINVI	2.0	0776	35e-	-46 Ani	nexin typ	pe VI signa	atur	e		
1TBH	ANNEXINI	з.	7040	47e-	-46 Ani	nexin typ	pe I signat	ture	:		
1TBH	ANNEXINII	1.3	2632	06e-	-42 Ani	nexin typ	pe II signa	atur	e		
1TBF											
2TBS											
2TBT	FingerPrint	No	.Mot:	ifs	SumId	AveId	ProfSco	re	Ppvalue	Evalue	GraphScan
2TBH	ANNEXINIII	8	of	8	7.4e+02	92	7153		5.3e-93	4.3e-88	IIIIIII
2TBH	ANNEXIN	6	of	7	362.54	60.42	3781		1.3e-70	le-65	IIIII.I
2TBH	ANNEXINV	6	of	8	358.81	59.80	4121		le-60	8e-56	I.III.II
2TBH	ANNEXINIV	7	of	8	415.08	59.30	4449		5.3e-60	4.2e-55	II.IIIII
2TBH	ANNEXINVI	7	of	8	375.22	53.60	3923		2.6e-51	2.le-46	IIIII.II
2TBH	ANNEXINI	6	of	8	333.30	55.55	3478		4.6e-51	3.7e-46	.IIIII.I
2TBH	ANNEXINII	6	of	8	345.13	57.52	3496		1.6e-47	1.3e-42	.IIII.II
2TBN	HEATSHOCK70	2	of	9	61.81	30.91	425		0.00013	10	iI
2TBN	NAHEXCHNGR3	2	of	16	68.16	34.08	432		0.00037	29	i.I
2TBN	CCYSTOKNINAR	2	of	7	60.29	30.15	346		0.0013	le+02	i.I
2TBF											
3TBS											
3TBT	MotifName	No	.Mot:	3	IdScore	PfScore	Pvalue	Seq	Juence		
3TBH	ANNEXINIII	1	of	8	83.33	512	2.59e-06	WVG	PRGTIKD		
3TBH	ANNEXINIII	2	of	8	92.75	1069	2.22e-16	RGL	GTDEKTLINI	LTERSNAQRQ	
3TBH	ANNEXINIII	3	of	8	96.08	856	2.72e-12	LKG	DLSGHFEHVM	VALV	
3TBH	ANNEXINIII	4	of	8	92.42	992	4.44e-16	LKK	SMKGTGTDED.	ALIEILTTR	
3TBH	ANNEXINIII	5	of	8	90.48	346	5.76e-04	YTV	YKKS		
3TBH	ANNEXINIII	6	of	8	92.59	1436	1.00e-16	LYN	IAGENKUGTDEI	DKFTEVLCLRSFPC]
3TBH	ANNEXINIII	7	of	8	98.72	1253	1.00e-16	KGA	GTDEFTLNRI	MVSRSEIDLLDIR	
3TBH	ANNEXINIII	8	of	8	92.86	689	1.33e-09	DTS	GDYRTVLLKI	С	
3TBB											
3TBH	ANNEXIN	1	of	7	60.39	719	3.47e-14	RGL	GTDEKTLINI	LTERSNAQRQ	
3TBH	ANNEXIN	2	of	7	51.85	447	1.86e-09	LKG	DLSGHFEHVM	VALV	
3TBH	ANNEXIN	3	of	7	65.40	716	6.27e-14	LKK	SMKGTGTDED.	ALIEILTTR	
3TBH	ANNEXIN	4	of	7	53.16	720	1.33e-15	LYN	IAGENKUGTDEI	DKFTEVLCLRSFPC	1
STRH	AMMEYTM	5	of	7	69 31	683	8 140-13	LVC	A COTTOR REPT NO.	TMWSDSFT	

SUMMARY

- Many different protein signature databases from small patterns to alignments to complex HMMs
- Have different strengths and weaknesses
- Have different database formats
- **Therefore:** best to combine methods, preferably in a database with them already merged for simple analysis with consistent format

Protein Secondary Structure

- **CATH** (Class, Architecture, Topology, Homology) http://www.biochem.ucl.ac.uk/dbbrowser/cath/
- SCOP (structural classification of proteins) -hierarchical database of protein folds http://scop.mrc-lmb.cam.ac.uk/scop
- **FSSP** Fold classification using structure-structure alignment of proteins http://www2.ebi.ac.uk/fssp/fssp.html
- **TOPS** Cartoon representation of topology showing helices and strands http://tops.ebi.ac.uk/tops/

