WORKSHOPS

Protein sequence analysis workshop

EMBOSS Package:

Available via www at hgmp or EBI or www.uk/embnet.org/Software/EMBOSS

Protein seq analysis programs:	
Antigenic	Pepcoil
Digest	Helixturnhelix
IEP	Prophecy
Pepinfo	Profit
Pepstats	Prophet
Sigcleave	Tmap

Building a profile

Get sequences and align them:

% emma

input RPOS_* (or seqret them into a file first)

Build profile from alignment using prophecy:

% prophecy

input x.aln file

choose [F]

Use matrix to search SW with profit *

% profit

matrix name from above

input sw:* (or eg sw:*_human)

Retrieve matches, add results to seq file, align, remake profile and rerun till convergence

* Can use same parameters used to create profile, or defaults

Other profiles

Building a Gribskov profile

File x.aln from before

% prophecy

choose [G]

Use matrix to search SW with prophet

% prophet matrix name from above input sw:*

Compare the two different matrices and results of searching

Other input and search options

- Input own file with sequences one after the other
- Have list file of sequence names, create fasta file- eg seq.list with sw:opsd_annoc, sw:opsd_apine etc. make fasta file: seqret @seq.list –outseq <outfile>
- Input sequences direct from db with sw:opsd_* or sw:opsd_a* * -any character string, ? -any character
- Can search subset of SW with sw:*_human
- Can search a file of sequences eg. Put together a file of GPCRs

Protein properties analysis

- Run antigenic using A85A_MYCTU.txt
- Run charge using any sequence
- Run digest using ACC8_HUMAN
- Run IEP using any sequence
- Run pepinfo
- Run pepstats

Protein sequence features

- Run helixturnhelix using LACI_ECOLI.txt
- Run pepcoil using ACC8_HUMAN
- Run tmap using ACC8_HUMAN or gpcr2_aln.txt
- Run sigcleave using signal_asg.txt

Web-based protein analysis tools

- Expasy Proteomics tools http://www.expasy.org.tools
- PredictProtein http://emblheidelberg.de/predictprotein/
- Use different sequences in directory to analyse, including glycosylation sites etc

Protein sequence analysis workshop GCG Package:

motifs uses the PROSITE database to find patterns in protein sequences.
profilescan uses a database of profiles to find structural motifs in proteins.
peptidesort shows peptides from a digest of an amino acid sequence.
isoelectric plots the charge as a function of pH for any peptide sequence.
peptidemap creates peptide map of an amino acid sequence.
peptidestructure predicts 2ry structure for a peptide, used by 'plotstructure'.
plotstructure plot output of 'peptidestructure'.
moment makes contour plot of helical hydrophobic moment of a peptide sequence.

helicalwheel plots a peptide structure as a helical wheel.

Building a profile with GCG

- Build profile using profilemake and SW:MCM5_*
- Use this to search using profilesearch
- Make alignment of new sequences using profilesegments

Take a sequence and find out as much as possible about its features using different tools

Protein pattern database workshop

PROGRAMS: EMBOSS- Patmat, Pfscan InterProScan BLOCKS CDD Web: Member databases (SMART)

Blocks analysis

- Done via web http://blocks.fhcrc.org/blocks
- Or by email: blocks@blocks.fhcrc.org
- Paste sequence (end4_myctu) into composer, can add comments with # Searching options:
 - Database to search:
 - #DB PLUS(default) | MINUS(PLUS without biased blocks) | PRINTS
 - Query sequence type:
 - #TY AUTO(default) | AA | DNA
 - For DNA queries, strands to search:
 - #ST BOTH(default) | FORWARD | REVERSE or 2 | 1 | -1
 - For DNA queries, genetic code to use for translation:
 - #GE 0(default) to 8

Post-processing options:

- Output type:
 - #OU ALL(default) | SUM | GFF | OLD | RAW
- Output format:
 - #FO TEXT(default) | HTML
- Expected value cutoff:
 - #EX n (default=5)

Sequence definition

#SQ

sequence in fasta or other common formats

EMBOSS

- Pattern matching in Prosite
 % patmatmotifs –full
 Input sw:5NTD_HUMAN
 Finding Financints
- Finding Fingerprints
 % pfscan
 Input sw:5NTD_HUMAN

InterProScan

Run the individual sequences END4_MYCTU.txt and END4_MYCLE.txt ./InterProScan.pl <seqfile> + ipr cd tmp/xx gmake raw -j1 -k (4 different formats) gmake txt (xml, html) Look at different results files or formats

InterProScan cont.

Compare M.tb and M.lep results with diff (txt) diff file1 file2 (need to specify directory) Try run diff on raw files Improve with ./FS_diff.pl <file1> <file2> (if in same directory)

If time permits run Mtb5prot.txt –5 sequences in a file

CDD

- Web server: http://www.ncbi.nlm.nih.gov/Structure/cdd
- Paste sequence in and search (end4_myctu) compare results to InterProScan, search CDD by keyword for related sequences

WEB SEARCHES

- Send sequences to InterProScan (http://www.ebi.ac.uk/interpro/scan.html) and member databases Prosite http://www.expasy.ch/prosite
- Prints http://www.bioninf.man.ac.uk/dbbrowser/PRINTS/ Pfam http://www.sanger.ac.uk/Software/Pfam/index.shtml SMART http://smart.embl-heidelberg.de/
- ProDom http://www.toulouse.inra.fr/prodom.html

Browse additional features of databases

Complete annotation of proteins

- Take hypothetical proteins from M. tuberculosis:
 - SW- mychyp_seq.txt
 - TRnew- mychyp_trseq.txt

Annotate as completely as possible. For SW compare with the SW annotation (mychyp_sw.txt)

Building Rules

- Collect related protein sequences eg from an InterPro entry into a file (same DR lines)
- Write script to write and count occurrence of DE, CC, KW and FT lines
- Try to find lines common to all entries, build a rule for new sequences hitting the same pattern databases

