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Spot Identification and Spot Identification and QuantitationQuantitation..

Normalization of data from each experiment.Normalization of data from each experiment.

Identification of Differentially Expressed GenesIdentification of Differentially Expressed Genes

Identified of genes with correlated patterns of Identified of genes with correlated patterns of 
expression.expression.

Interpretation of data with respect to pathways.Interpretation of data with respect to pathways.

Literature filtered analysis.Literature filtered analysis.

Challenges in  Microarray Data Analysis



Image Processing IssuesImage Processing Issues

• • Spot FindingSpot Finding

• • Background SubtractionBackground Subtraction

• • ReproducibilityReproducibility

• • Measure Measure -- median median vs.vs. mean (integrated intensity)mean (integrated intensity)

• • Quality measuresQuality measures



TIGR TIGR SpotfinderSpotfinder Loading Image DataLoading Image Data



TIGR TIGR SpotfinderSpotfinder Zooming In Zooming In 



TIGR TIGR SpotfinderSpotfinder Image Overlay Image Overlay 



TIGR TIGR SpotfinderSpotfinder Region Selection Region Selection 



TIGR TIGR SpotfinderSpotfinder Grid DeterminationGrid Determination



TIGR TIGR SpotfinderSpotfinder Grid AdjustmentGrid Adjustment



TIGR TIGR SpotfinderSpotfinder Spot DeterminationSpot Determination



TIGR TIGR SpotfinderSpotfinder Batch ModeBatch Mode



TIGR TIGR SpotfinderSpotfinder Data Data Ouptut Ouptut to Spreadsheetto Spreadsheet

Output includes:Output includes:
Integrated Intensity 1,Integrated Intensity 1,
Integrated Intensity 2,Integrated Intensity 2,
Ratio, Spot Area,Ratio, Spot Area,
Saturation,Saturation,
Mean and Median Mean and Median 
Intensities,Intensities,
Quality FactorsQuality Factors



Comparison of Mean, Median, and Mode RatiosComparison of Mean, Median, and Mode Ratios

A comparison of Cy3/Cy5 ratios calculated using the mean, medianA comparison of Cy3/Cy5 ratios calculated using the mean, median, and mode ratios for , and mode ratios for 
control spots that should have a measured ratio of 1 for the 1stcontrol spots that should have a measured ratio of 1 for the 1st, 3rd, 4th, 5th columns. , 3rd, 4th, 5th columns. 

1.398 0 1.113 0.830 0.518
1.984 0 0.554 0.906 5.721
1.536 0 1.113 1.152 0.570
1.051 0 2.490 1.684 1.437
2.794 0 0.976 1.544 1.651
1.095 0 1.564 1.203 1.516
1.332 0 1.253 0.614 94.797
1.697 0 16.921 2.039 0.788
0.550 0 1.065 0.873 0.916
1.022 0 0.742 0.377 0.681
1.707 0 1.714 1.411 2.167
1.784 0 0.392 0.976 1.080
2.269 0 0.318 1.708 0.615
1.932 0 0.604 1.331 0.579
0.052 0 1.618 0.380 1.254
0.641 0 0.543 1.373 1.022

average 1.428 2.061 1.150 7.207
stdev 0.690 4.004 0.479 23.391

1.000 0 0.930 1.053 0.898
1.067 0 1.053 1.056 1.015
1.008 0 1.042 1.056 1.003
1.098 0 1.047 1.034 1.026
0.980 0 0.998 1.004 0.955
1.041 0 1.040 1.045 1.074
1.030 0 1.081 1.029 1.134
1.013 0 0.987 1.085 1.014
0.896 0 1.025 1.007 1.079
1.026 0 1.028 1.072 0.874
1.001 0 1.067 1.020 1.014
0.977 0 0.928 1.094 0.979
1.061 0 1.105 1.027 1.096
1.136 0 0.963 1.067 1.020
0.929 0 1.033 1.083 1.062
0.877 0 0.974 1.133 1.110

average 1.009 1.019 1.054 1.022
stdev 0.068 0.051 0.034 0.072

1.012 0 0.966 0.987 0.897
1.135 0 1.037 1.034 1.015
1.008 0 1.058 1.008 1.058
1.079 0 1.059 1.061 1.026
1.022 0 1.069 1.031 1.019
1.070 0 1.032 1.024 1.139
0.986 0 1.058 1.064 1.047
1.057 0 0.990 1.063 1.022
0.935 0 1.105 1.069 1.079
1.094 0 1.024 1.057 0.892
1.014 0 1.040 0.997 1.019
0.985 0 1.005 1.067 1.035
1.011 0 1.033 1.035 1.143
1.232 0 0.996 1.169 1.077
0.819 0 1.085 1.118 1.039
0.942 0 0.999 1.129 1.061

average 1.025 1.035 1.057 1.036
stdev 0.092 0.037 0.049 0.067

Mean ratioMean ratio Median ratioMedian ratio Mode ratioMode ratio



Integral Ratio vs. used Spot Size
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Median ratio vs. used Spot Size 
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Integral (Mean) Ratio Integral (Mean) Ratio vs.vs. Median RatioMedian Ratio

A comparison of Cy3/Cy5 ratios for various spot sizes A comparison of Cy3/Cy5 ratios for various spot sizes 
using either the integrated intensity or the pixel using either the integrated intensity or the pixel 
median. In this case, the actual spot size is median. In this case, the actual spot size is 
approximately 15 pixels in diameter. approximately 15 pixels in diameter. 



GeneGene
Spot Spot 
on aon a
SlideSlide

FluoresenceFluoresence
IntensityIntensity

ExpressionExpression
MeasurementMeasurement

SpeciesSpecies
SelectionSelection

DifferentialDifferential
GrowthGrowth
ConditionsConditions

RNA PreparationRNA Preparation
and Labelingand Labeling

CompetitiveCompetitive
HybridizationHybridization

Microarray Expression AnalysisMicroarray Expression Analysis



Data Analysis IssuesData Analysis Issues

• • PresentationPresentation

• • Multiple ViewsMultiple Views

• • NormalizationNormalization

• • Identification of Differentially Expressed GenesIdentification of Differentially Expressed Genes

• • Multiple ExperimentsMultiple Experiments



Goal is to measure ratios of gene expression levelsGoal is to measure ratios of gene expression levels
(ratio)(ratio)ii = = RRii//GGii

where where RRii//GGii are, respectively , the measured intensities for are, respectively , the measured intensities for 
the the iith th spot.spot.

In a selfIn a self--self hybridization, we would expect all ratios to be self hybridization, we would expect all ratios to be 
equal to one:equal to one:

RRii//GGii = 1 for all = 1 for all ii. . But they may not be.But they may not be.

Why not?Why not?
Unequal labeling efficiencies for Cy3/Cy5Unequal labeling efficiencies for Cy3/Cy5
Noise in the systemNoise in the system

Differential expressionDifferential expression

Normalization brings (appropriate) ratios back to one.Normalization brings (appropriate) ratios back to one.

Why Normalize Data?



Normalization ApproachesNormalization Approaches
• • Total IntensityTotal Intensity
• • Linear RegressionLinear Regression
• • Ratio statistics described by Chen, Dougherty, & Bittner Ratio statistics described by Chen, Dougherty, & Bittner 

J. J. BiomedBiomed. Optics. Optics (1997) 2(4) 364(1997) 2(4) 364--374374
• • Iterative log(ratio) mean centeringIterative log(ratio) mean centering

Any of these using:Any of these using:
•• Entire Data SetEntire Data Set
• • UserUser--defined Data Set/Controlsdefined Data Set/Controls



Normalization ApproachesNormalization Approaches
Entire Data SetEntire Data Set

• • Probe Quantification less importantProbe Quantification less important
• • No assumption on which genes constitute “housekeeping” setNo assumption on which genes constitute “housekeeping” set
• • Uses all the dataUses all the data
• • No independent confirmationNo independent confirmation

UserUser--defined Data Set/Controlsdefined Data Set/Controls

• • Requires definition of “housekeeping” set Requires definition of “housekeeping” set 
oror good added controlsgood added controls

• • Requires good RNA Requires good RNA quantitationquantitation
• • Ignores much dataIgnores much data



Normalization ApproachesNormalization Approaches

SolutionSolution(?)(?)

• • Experiment dependentExperiment dependent
• • Use a combination of techniquesUse a combination of techniques
• • SMART Experimental designSMART Experimental design



Ratio Histogram
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Log(ratio) Histogram
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Normalization Approaches: Total IntensityNormalization Approaches: Total Intensity
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kk NGG =′  and kk RR =′ .Normalization:

Assumption: Total RNA (mass) used is same for both samplesAssumption: Total RNA (mass) used is same for both samples..

So, averaged across thousands of genes, total hybridizationSo, averaged across thousands of genes, total hybridization
should be the sameshould be the same



Normalization Approaches: Linear RegressionNormalization Approaches: Linear Regression

Assumption: Total RNA used is constant, some genes expressed with
ratio of 1, slope of best fit line normalized to 1

Normalization Factor:

Normalization:

kkk uGR ++= 10 ββ

∑∑
==

−−==
n

ki
kk

n

k
k GRuS

1\

2
10

1

2
10 )(),( ββββ

The values of 0β and 1β that minimize ),( 10 ββS , 0b and 1b , are given by

∑

∑

=

=

−

−−
= n

k
k

n

k
kk

GG

GGRR
b

1

2

1
1

)(

))((
and GbRb 10 −= ,

where  
n
R

R k∑= and
n
G

G k∑= .

kk G
b

G 







=′

1

1  and kk RR =′ .



Normalization Approaches: Ratio Statistics (1)Normalization Approaches: Ratio Statistics (1)

Assumption: Total RNA used is constant, some genes expressed with
ratio of 1, variations are functions of the common mean

Probablilty Density for Ratio Tk:

kk GG cµσ =  and 
kk RR cµσ = , with kRG kk

µµµ == .
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This density can be used to calculate the mean, standard deviation and confidence interval limits
for the distribution of measured ratio values. As functions of c, these parameters can be
estimated using a polynomial approximation
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with constants are chosen appropriately:

µ: ),,,( 0123 aaaa  = (0.364, 1.279, −0.0427, 1.001)
σ : ),,,( 0123 aaaa  = (−2.805, 2.911, −2.706, 0.979)

  lower limit at 95% confidence: ),,,( 0123 aaaa  = (28.644, −2.830, 3.082, 0.989)
  upper limit at 95% confidence: ),,,( 0123 aaaa  = (−5.002, .4.462, −3.496, 0.9968)



Normalization Approaches: Ratio Statistics (2)Normalization Approaches: Ratio Statistics (2)
Assume that the population mean 0µ  = 1and let the first approximation of the normalization parameter m1 be equal to the calculated sample mean.
A first approximation of c, 1ĉ , is calculated using
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where the sum is over the n elements taken initially between the one-half and twice the sample mean.

Upper and lower limits at the 95% confidence level, 1θ  and 2θ , are then calculated using 1ĉ  and the previous approximation.

A normalization factor 1m̂  is calculated using
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where, again, we take 0µ̂ =1, the sum is over the n array elements used to estimate 1ĉ , and i is an index used to count the number of iterations.

The individual ratios are then rescaled using
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This process is then iterated until the calculated value of the mean estimator converges to a fixed value.

The upper and lower confidence limits for the normalized experimental data are then calculated as

11 ˆ θθ m=′  and 22 ˆ θθ m=′

and ( )21,θθ ′′  are used to define the limits for identification of differentially expressed genes





Bad Data from Parts Unknown

Gary ChurchillGary Churchill



Good Data from TREX
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L4A
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Lowess correction
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Normalization using local linear regressionNormalization using local linear regression

Ivana Yang , John QuackenbushIvana Yang , John Quackenbush

±±±±1.23 fold ±±±±1.23 fold
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Normalization using local linear regressionNormalization using local linear regression

Ivana Yang , John QuackenbushIvana Yang , John Quackenbush

±±±±1.23 fold ±±±±1.23 fold
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Ivana Yang , John QuackenbushIvana Yang , John Quackenbush

±±±±1.23 fold ±±±±1.23 fold



Goal is identify genes (or experiments) which haveGoal is identify genes (or experiments) which have
““similarsimilar”” patterns of expressionpatterns of expression

This is a problem in data miningThis is a problem in data mining

““Clustering AlgorithmsClustering Algorithms”” are most widely usedare most widely used

TypesTypes
Agglomerative: HierarchicalAgglomerative: Hierarchical
Divisive: Divisive: kk--means, means, SOMsSOMs
Others: Principal Component Analysis (PCA)Others: Principal Component Analysis (PCA)

All depend on how one measures distanceAll depend on how one measures distance

Multiple Experiments?



Crucial concept for understanding clusteringCrucial concept for understanding clustering

Each gene is represented by a vector where coordinates are Each gene is represented by a vector where coordinates are 
its values log(ratio) in each experimentits values log(ratio) in each experiment

xx = log(ratio)= log(ratio)expt1expt1
yy = log(ratio)= log(ratio)expt2expt2
zz = log(ratio)= log(ratio)expt3expt3
etc.etc.

For example, if we do six experiments, For example, if we do six experiments, 
GeneGene11 = (= (--1.2, 1.2, --0.5, 0, 0.25, 0.75, 1.4) 0.5, 0, 0.25, 0.75, 1.4) 
GeneGene22 = (0.2, = (0.2, --0.5, 1.2, 0.5, 1.2, --0.25, 0.25, --1.0, 1.5) 1.0, 1.5) 
GeneGene33 = (1.2, 0.5, 0, = (1.2, 0.5, 0, --0.25, 0.25, --0.75, 0.75, --1.4) 1.4) 
etc.etc.

Expression Vectors



These gene expression vectors of log(ratio) values can be These gene expression vectors of log(ratio) values can be 
used to construct an expression matrixused to construct an expression matrix

Expression Matrix
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GeneGene11 --1.2    1.2    --0.5  0.5  0 0 0.25     0.75 0.25     0.75 1.4 1.4 
GeneGene22 0.2    0.2    --0.5  0.5  1.2 1.2 --0.25   0.25   --1.0 1.0 1.5 1.5 
GeneGene33 1.2   1.2   0.5 0.5 0 0 --0.25    0.25    --0.75 0.75 --1.41.4
etc.etc.

This is often represented as a red/green colored matrixThis is often represented as a red/green colored matrix



Distances are measured Distances are measured ““betweenbetween”” expression vectorsexpression vectors

Distance metrics define the way we measure distancesDistance metrics define the way we measure distances

Many different ways to measure distance:Many different ways to measure distance:
Euclidean distanceEuclidean distance
Pearson correlation coefficient(s)Pearson correlation coefficient(s)
Manhattan distanceManhattan distance
Mutual informationMutual information
KendallKendall’’s s TauTau
etc.etc.

Each has different properties and can reveal different Each has different properties and can reveal different 
features of the  datafeatures of the  data

Distance metrics



Once a distance metric has been selected, the starting point Once a distance metric has been selected, the starting point 
for all clustering methods is a for all clustering methods is a ““distance matrixdistance matrix””

Distance Matrix
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GeneGene11 0      1.5  0      1.5  1.2      0.25 1.2      0.25 0.75 0.75 1.4 1.4 
GeneGene22 1.5    1.5    0      1.3      0.55  0      1.3      0.55  2.0 2.0 1.5 1.5 
GeneGene33 1.2   1.2   1.3 1.3 0    0    1.3      0.75 1.3      0.75 0.30.3
GeneGene44 0.25    0.55 0.25    0.55 1.31.3 0      0.25     0.4 0      0.25     0.4 
GeneGene55 0.75      2.0    0.75    0.75      2.0    0.75    0.25        0.25        0     1.2 0     1.2 
GeneGene66 1.4      1.5      0.3        0.4        1.2        01.4      1.5      0.3        0.4        1.2        0

The elements of this matrix are the pairThe elements of this matrix are the pair--wise distances. wise distances. 
Note that the matrix is symmetric about the diagonal.Note that the matrix is symmetric about the diagonal.



Select the data you want to clusterSelect the data you want to cluster

““FilterFilter”” (normalize) the data appropriately and select distance(normalize) the data appropriately and select distance

Apply method:Apply method:
1.  1.  Search through the distance matrix and find the two most similarSearch through the distance matrix and find the two most similar

clusters. This is the first true stage in the clusters. This is the first true stage in the ““clusteringclustering”” process. If process. If 
several pairs share the same similarity, use a predetermined rulseveral pairs share the same similarity, use a predetermined rule to e to 
decide between alternatives.decide between alternatives.

2. 2. Fuse the two selected clusters to produce a new cluster that nowFuse the two selected clusters to produce a new cluster that now
contains at least two objects.contains at least two objects.

3. 3. Calculate the distances between this new cluster and all other Calculate the distances between this new cluster and all other 
clusters. There is no need to calculate clusters. There is no need to calculate allall distances since only those distances since only those 
involving the new cluster have changed.involving the new cluster have changed.

Repeat steps 1Repeat steps 1--3 until all objects are in one cluster.3 until all objects are in one cluster.

Hierarchical clustering



Select the data you want to cluster and filter; select distanceSelect the data you want to cluster and filter; select distance

Apply method:Apply method:
1.1. All initial objects are randomly assigned to one of All initial objects are randomly assigned to one of kk clusters (where clusters (where kk

is an input parameter to the algorithm).is an input parameter to the algorithm).
2.2. An average expression vector is then calculated for each clusterAn average expression vector is then calculated for each cluster and and 

this is used to compute the distances between clusters.this is used to compute the distances between clusters.
3. 3. Objects are moved between clusters and intraObjects are moved between clusters and intra-- and interand inter--cluster cluster 

distances are measured with each move. Objects are allowed to distances are measured with each move. Objects are allowed to 
remain in the new cluster only if they are closer to it than to remain in the new cluster only if they are closer to it than to their their 
previous cluster.previous cluster.

4. 4. Following each move, the expression vectors for each cluster areFollowing each move, the expression vectors for each cluster are
recalculated.recalculated.

5. 5. The shuffling proceeds until moving any more objects would make The shuffling proceeds until moving any more objects would make 
the clusters more variable.the clusters more variable.

k-means clustering



Select the data you want to cluster and filter; select distanceSelect the data you want to cluster and filter; select distance

Apply method:Apply method:
1.1. Random vectors are constructed and assigned to each partition.Random vectors are constructed and assigned to each partition.

(where the number and geometry are input parameters).(where the number and geometry are input parameters).
2.2. A gene is picked at random and using a selected distance metric,A gene is picked at random and using a selected distance metric, the the 

reference vector that it is closest to the genereference vector that it is closest to the gene’’s is identified .s is identified .
3. 3. The reference vector is then adjusted so that it is more similarThe reference vector is then adjusted so that it is more similar to the to the 

randomly picked generandomly picked gene’’s. The reference vectors that are nearby on s. The reference vectors that are nearby on 
the two dimensional grid are also adjusted so that they too are the two dimensional grid are also adjusted so that they too are more more 
similar to the randomly selected gene .similar to the randomly selected gene .

4. 4. Steps 2 and 3 are iterated several thousand times, decreasing thSteps 2 and 3 are iterated several thousand times, decreasing the e 
amount by which the reference vectors are adjusted and increasinamount by which the reference vectors are adjusted and increasing g 
the stringency used to define closeness in each step. As the prothe stringency used to define closeness in each step. As the process cess 
continues, the reference vectors are converge to fixed values .continues, the reference vectors are converge to fixed values .

5. 5. Finally, the genes are mapped to the relevant partitions dependiFinally, the genes are mapped to the relevant partitions depending on ng on 
the reference vector to which they are most similar.the reference vector to which they are most similar.

Self Organizing Maps (SOMs)



Select the data you want to cluster and filterSelect the data you want to cluster and filter

Apply method:Apply method:
OK, this gets a bit complicated. . . . OK, this gets a bit complicated. . . . 

Basically:Basically:
1.1. We find the eigenvectors of the expression matrixWe find the eigenvectors of the expression matrix
2.2. We select those with the greatest We select those with the greatest eigenvalueseigenvalues
3.3. We project our data on the eigenvectors with the three greatesWe project our data on the eigenvectors with the three greatest t 

eigenvalueseigenvalues
4.4. And make pretty pictures And make pretty pictures 

Principal Component Analysis (PCA)



Select the data you want to cluster and filterSelect the data you want to cluster and filter

Apply method:Apply method:
OK, this gets even more complicated. . . . OK, this gets even more complicated. . . . 

Basically this is a neural network approach to finding dividing Basically this is a neural network approach to finding dividing your your 
data into genes data into genes ““likelike”” and and ““unlikeunlike”” a training set. . . . a training set. . . . 

1.1. Pick a set of genes you are know about (your training set)Pick a set of genes you are know about (your training set)
2.2. Train the SVM. This produces a pattern that can be recognizedTrain the SVM. This produces a pattern that can be recognized
3.3. Screen the data using the SVM modelScreen the data using the SVM model

Support Vector Machines (SVM)



TIGR MeV: Test Data SetTIGR MeV: Test Data Set



Hierarchical ClusteringHierarchical Clustering

(A)(A) Average LinkageAverage Linkage

(B)(B) Complete LinkageComplete Linkage

(C)(C) Single LinkageSingle Linkage

Even related algorithmsEven related algorithms
produce slightly differentproduce slightly different
views of the data.views of the data.



Hierarchical Clustering and PCAHierarchical Clustering and PCA

(A)(A) Average LinkageAverage Linkage

(B)(B) PCAPCA

Separate clusters may Separate clusters may 
have more or less have more or less 
support when using support when using 
different algorithms.different algorithms.



kk--means Clusteringmeans Clustering

Separate clusters may Separate clusters may 
have more or less have more or less 
support when using support when using 
different algorithms.different algorithms.

Note colors are based onNote colors are based on
hierarchical clusteringhierarchical clustering
Results.Results.



The effects on Mean CenteringThe effects on Mean Centering

(A)(A) Expression Expression 
ProfilesProfiles

(B)(B) PCAPCA
(C)(C)HierarchicalHierarchical

ClusteringClustering

Adjusting the dataAdjusting the data
can have profoundcan have profound
effects, but allow effects, but allow 
different patterns to different patterns to 
be seen.be seen.



Very Useful Microarray URLsVery Useful Microarray URLs

LemingLeming ShiShi http://www.genehttp://www.gene--chips.comchips.com
TIGRTIGR http://pga.tigr.org/toolshttp://pga.tigr.org/tools
MGEDMGED http://www.http://www.mgedmged.org.org
Wentian Wentian LiLi http://linkage.http://linkage.rockefellerrockefeller..eduedu//wliwli/microarray/microarray
EBIEBI http://industry.http://industry.ebiebi.ac..ac.ukuk/~/~alanalan//MicroArrayMicroArray
Terry SpeedTerry Speed http://stathttp://stat--www.www.berkeleyberkeley..eduedu/users/terry//users/terry/zarrayzarray/Html/Html
Joe Joe DerisiDerisi http://www.microarrays.org/index.htmlhttp://www.microarrays.org/index.html
Pat BrownPat Brown http://http://cmgmcmgm..stanfordstanford..eduedu//pbrownpbrown//mguidemguide//
NCGRNCGR http://www.http://www.ncgrncgr.org/research/.org/research/genexgenex/other_tools.html/other_tools.html
StanfordStanford http://www.http://www.dnachipdnachip.org.org

HAPIHAPI http://array.http://array.ucsducsd..eduedu
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