Microarray Data Analysis - II

FIOCRUZ Bioinformatics Workshop
6 June, 2001

Challenges in Microarray Data Analysis

- Spot Identification and Quantitation.
- Normalization of data from each experiment.
- Identification of Differentially Expressed Genes
- Identified of genes with correlated patterns of expression.
- Interpretation of data with respect to pathways.
- Literature filtered analysis.

Image Processing Issues

- Spot Finding
- Background Subtraction
- Reproducibility
- Measure - median us. mean (integrated intensity)

Quality measures

TIGR

THE MSTIIUTE FOR GEIOMC RESERMCH

TIGR Spotfinder Loading Image Data

TIGR Spotfinder Zooming In

Spacing
50

- Use EKG

Draw Grid Manual Grid
Process

Excel

General Charnel A \mid Channel B| Overay \mid Selection \mid Mask \mid Corverter \mid Batch File \mid

TIGR Spotfinder Image Overlay

TIGR Spotfinder Region Selection

TIGR Spotfinder Grid Determination

TIGR Spotfinder Grid Adjustment

TIGR Spotfinder Spot Determination

Resed		
00		
	Zomin	* * -
	Zom out	* * * * * * * \% \%
Ekg		+ * * * * * * * * * *
		*** * a + ******
		* ***********
$\mathrm{Spmang}_{\text {S }}$		
Excel		

TIGR Spotfinder Batch Mode

TGR Spotfinder Data Ouptut to Spreadsheet

Ele]
																	-回区	
$\mathrm{A}_{1} \quad$ - $=0.658366180733696$																		
	A	B	c	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	
1	0.5583662	0.3200546	0	1.4709515	5.5659516	0.8221982	0	1.2417782	15.806612	652555	2.2853259	1.1428822	1.5317368	0.5656727	2204492	817383	371925	
2	0.7558224	0.4726607	0.6765916	2.15058	2.45875		16.717262		0.545069	0.2482	0.6166225	0.63609	2.75292	0.4951814	14343	803267	0.3516	
3	0.6014479	0.6786517	0.4542122	. 82454	1944	68038	0	1.162365		49393	0.5924173	0.46737	0.78874	0.6112	0.67597	0.3229271	0.41447	
4	0.7138603	0.627963	0.6439872	7704063	0.89255		0.4864845	0	1.5022185	71613	0.6375733	82144	1.4876398	53030	0.9627	52	0.4752789	
5	19867	0.5250862	0.5794229	4.6387927	1.6258561	154	0.6856697	0.6019967	0.9303186	0.7640353	4732	0.1956629	0.6116118	0.7179828	0.511428	77732	0.3184048	
6	597972	0.573433	0.5087411	1.0288527	0.8213453	. 088831	0.5182413	7.3380015	0.5439334	0.7649303	0.6407183	0.8737587	2.5823746	3.0950537	.08335	0.5501509	. 4692662	
7	0.8181596	5.0143941	0.4104919	0.8590075	2.4741482	0.511308	0.2833126	0.7497842	0.5266239	0.5785949	0.5328029	0.58444	1.3443897	0.66853	0.73942	0.4709574	0.3382549	
8	0.4960111	0.9603443	5195294	0.8830633	B163842	7535587	3.0679385	0.888154	0.8022219	0.5235721	0.445382	0.61028	4.307026	0.53593	1.14856	. 5624667	0.5095583	
9	1.1002291	0.331194	0.9343573	0.4383423	0.5945796	2.1851852		1.5584225	0.6857057	0.3514542	0.9283824	1.5142216	0.5062739	2.3805146	0.612243	0.4786529	1.116322	
10	0.667834	0.6013884	0.9775251	0.5791472	0.6932317	4.3197004	2.2649694	0.8664837	0.4157382	1393	2.2690295	0.7714797	0.4356746	1.8112027	0.49928	0.3741092	0.54948	
11	0.4865241	0.6553847	0.628634	0.3819333		1.0413585	2.6687442	0.4432519	0.410186	0.2044601	0.7793285	18592	0.3790219	0.805083	0.5479772	1.7025396	0.6885773	
12	0.377371	0.7351658	0.6047932	0.6122858	27360	22.128571		0.6999262	1.1087549	0.7171094	1.023534	2816	19872	414	1963	0.71932	0.877293	
13	0.3941197	0.4684356	0.548851	0.3378463	5800944	0.4016139	0.4345092	0.8373468	0.5058177	0.193656	0.6716211	0.519120	0.381487	161	. 34421	0.601677	0.73152	
14	1496	0.6417714	0.6545356	0.5588574	0.6905183	0.9231741	0.9723208	0.6572631	0.5128263	0.2444581		0.670613	0.57121	43.3675	0.70716		0.6026	
15	0.9472301	0.4330814	0.5178506	0.4985484	0.6018318	. 5159809	0.64819	0.3768859	0.5054452	1.0501037	0.6222883	0.5850231	0.6007415	0.928155	0.7076223	1.6884949	0.9790521	
16	0.6911812	0.4346258	1.1916842	0.4309419	8.9242692	43848		96.033457	0.6009259	0.7480124	0.6310674	3201	0.664776	0.610729	0.4037619	0.4548992	0.5031051	
17	1.9877921	0.8708843	0.5843845	0.4244362	10239	0.830209	0.8887241		0.5655554	0.924516	1.1751844	0.974224	0.5055666	0.6756	0.65630	0.6590467	0.7881861	
18	0.8784821	0.762783	0.6200871	0.4537044	391829	97	0.4590029	229	3.3292708	0.6948884	0.6198393	0.95150	0.9830806	031	0.297055	57	0.6457372	
19	0.744398	0.3993024	0.2824506	9.7648983	1.6374832	4936004	4.3733205	5.9774657	3.660936	0.9652109	0.7294435	1.055653	0.2780486	0.55476	0.48319	0.6634127	0.8785753	
20	0.6150365	0.7199398	0.3694191	3.0180843	17.80643	0.6281572	45.43388	2.4153739	20010	2.0190544	0.7906932	0.5755896	23672	21.117735	47.738657	3.7311394	0.561419	
21	0.3831165		0.7697642			0.9106237	0.559151	0.4493976	0.5317561	1.9017256	0.454886	0.6134742	0.4145606	0.4072714	0.69595	0.5330013	0.5375891	
22	0.7813621	0.9994261	0.6439033	0.4590316	008	0.4194966	315	0.6708735	1.2265628	6.760127	0.866507	0.476618	0.621030	0.260364	0.4316437	0.6079227	6760341	
23	0.9928715	0.808178	0.9006058	3.9962708	0.5796124	0.326307	0.5219831	1.2754642	13366	0.7130079	0.6032611	0.4392349	0.2545188	1.066655	0.46842	0.7079562	0.4384588	
24	0.6423902	0.5016539	0.6781809			0.4935037	0.3806448	0.4131515		1.7617517	0.608026	0.5602693	1.2712959	0.3531592	0.8132697	0.5016375	0.5417107	
25	2.7186579	0.5461783	4.7906256	1.3970144	1.2894225	33492	0.5698123	0.6633413	45537	7.7535278	0.4481022	0.843152	0.5930069	0.546880	0.9798421	0.5280782	0.6872405	
26	0.4448915	0.2928477	1.138561	0.872978	2.9418556	3.2201626	0.4299104	0.7401343	0.8747521	0.6191381	0.5955113	0.701972	0.7324154	0.311703	0.6549464		0.5135729	
27	0.8660603	0.4925402	0.5055647	18821			0.4171291	0.4299915	0.5592586	0.367861	0.5143132	0.9574	0.6374241	0.556252		0.6587389	0.661734	
28	0.6870497	0.5846247	0.5644515	5.7504524	0.7351635	2.645988	0.2871387	0.6415056	28739	0.6660191	0.5158808	0.925561	0.5047607	0.6047711	0.6464081	0.7697136	0.783176	
29	0.8289175	0.5033416	0.5644581	5.5740416	0.6687968	1.2334758		0.6071581	0.5320682	0.9103183	0.4253956	2.064442	0.3088956	0.655020	2.8981733	0.3853836	0.6782611	
30	0.6018762	0.7041271	0.8834399	0.5162058	0.5014956	3.0018989	0.4932798	1.2487259	0.4648862	1.0122426	0.3936311	0.5598506	0.2981063	0.5395712	1.1278056	0.5936225	1.2177372	
31	1.8010817	0.6359243	0.5820145	1.2524697	1.64248	19.682836	0.6768014		0.8281743	0.788474		0.9617461	0.468756	0.743998	0.4900083	0.6258416	0.5829106	
32	0.5271594	0.788637	0.8683437	0.4918654	0.8378943	28691	0.3787699	0.697312		1.0318284	7.5672938	0.8437288	1.162031	0.529426	0.2146548	0.5499871	0.3565854	
33	1.1121659	0.7409447	0.6622219	0.7243704	0.4079886	2.7667886	1.5015783	0.5296397	0.4397992	0.8804963	0.4392882		0.6234124	0.747277	0.3598265	0.640556	0.9221139	
34	0.6449821	0.8512406	0.4972888	3.7825806	0.6082631	0.5507858	0.9195138	0.8752735	0.664297	0.5932464	0.3333748	0.6606828	0.71511	0.6435152	0.4954949	0.6247832	0.6587191	
35	28964	0.9977072	0.5916031	5.875817	2.1456126	24.453188			0.4265595	0.7368994	2.5250656	0.7106283	0.5794094	0.6161443	0.57432	0.4170127	0.918404	
36	1.1047913	1.1000884	0.7202179		1.0189481	1.0768023	0.6247294	6.124451	8.1567366	0.5836243	0.611794	3.1444078	0.6042322	18.418329	0.4720763	0.5798694	1.1561933	
37		0.7718797	0.91057	0.9746901	0.6604389	0.6350821	0.6017641	0.729244	0.5387656	2.3600445	0.6795764	0.7348712	0.315515	0.470978	0.454404	0.5517463	0.37063	
	073a3na7						17				$\int_{1}^{8731939}$							\checkmark

Output includes:

Integrated Intensity 1,
Integrated Intensity 2, Integrated Intensity 1,
Integrated Intensity 2, Ratio, Spot Area, Saturation, Mean and Median Intensities, Quality Factors

Comparison of Mean, Median, and Mode Ratios

Mean ratio

	1.012	0	0.966	0.987	0.897
	1.135	0	1.037	1.034	1.015
	1.008	0	1.058	1.008	1.058
	1.079	0	1.059	1.061	1.026
	1.022	0	1.069	1.031	1.019
	1.070	0	1.032	1.024	1.139
	0.986	0	1.058	1.064	1.047
,	1.057	0	0.990	1.063	1.022
	0.935	0	1.105	1.069	1.079
-	1.094	0	1.024	1.057	0.892
1	1.014	0	1.040	0.997	1.019
,	0.985	0	1.005	1.067	1.035
	1.011	0	1.033	1.035	1.143
	1.232	0	0.996	1.169	1.077
)	0.819	0	1.085	1.118	1.039
	0.942	0	0.999	1.129	1.061
average	1.025		1.035	1.057	1.036
stdev	0.092		0.037	0.049	0.067

Median ratio

	1.000	0	0.930	1.053	0.898
	1.067	0	1.053	1.056	1.015
	1.008	0	1.042	1.056	1.003
	1.098	0	1.047	1.034	1.026
	0.980	0	0.998	1.004	0.955
	1.041	0	1.040	1.045	1.074
	1.030	0	1.081	1.029	1.134
	1.013	0	0.987	1.085	1.014
	0.896	0	1.025	1.007	1.079
	1.026	0	1.028	1.072	0.874
	1.001	0	1.067	1.020	1.014
	0.977	0	0.928	1.094	0.979
	1.061	0	1.105	1.027	1.096
	1.136	0	0.963	1.067	1.020
	0.929	0	1.033	1.083	1.062
	0.877	0	0.974	1.133	1.110
average	1.009		1.019	1.054	1.022
stdev	0.068		0.051	0.034	0.072

Mode ratio

	1.398	0	1.113	0.830	0.518
	1.984	0	0.554	0.906	5.721
	1.536	0	1.113	1.152	0.570
	1.051	0	2.490	1.684	1.437
	2.794	0	0.976	1.544	1.651
	1.095	0	1.564	1.203	1.516
1.332	0	1.253	0.614	94.797	
	1.697	0	16.921	2.039	0.788
	0.550	0	1.065	0.873	0.916
	1.022	0	0.742	0.377	0.681
	1.707	0	1.714	1.411	2.167
	1.784	0	0.392	0.976	1.080
	2.269	0	0.318	1.708	0.615
	1.932	0	0.604	1.331	0.579
	0.052	0	1.618	0.380	1.254
	0.641	0	0.543	1.373	1.022
	1.428		2.061	1.150	7.207
average	0.690		4.004	0.479	23.391
stdev					

A. comparison of $\mathrm{Cy} 3 / \mathrm{Cy} 5$ ratios calculated using the mean, median, and mode ratios for control spots that should have a measured ratio of 1 for the 1 st , 3 rd , 4th, 5 th columns.

Integral (Mean) Ratio vs. Median Ratio

Integral Ratio vs. used Spot Size

A comparison of Cy3/Cy5 ratios for various spot sizes using either the integrated intensity or the pixel median. In this case, the actual spot size is approximately 15 pixels in diameter.

TIGR
THE MSTIIIUTE FOR GEIOMC RESEAPH

Microarray Expression Analysis

Species
Selection

Differential
Growth
Conditions

RNA Preparation and Labeling

Competitive Hybridization

Spot
on a Slide

Fluoresence Intensity

Expression Measurement

Data Analysis Issues

- Presentation
- Multiple Views
- Normalization
- Identification of Differentially Expressed Genes
- Multiple Experiments

TIGR

THE MSTIIUTE FOR GEIOMC RESERMCH

Why Normalize Data?

Goal is to measure ratios of gene expression levels
$(\text { ratio })_{i}=\mathrm{R}_{i} / \mathrm{G}_{i}$
where $\mathrm{R}_{i} / \mathrm{G}_{i}$ are, respectively, the measured intensities for the ith spot.

- In a self-self hybridization, we would expect all ratios to be equal to one:
$\mathrm{R}_{i} / \mathrm{G}_{i}=1$ for all $i_{\text {. }}$ But they may not be.
- Why not?
* Unequal labeling efficiencies for Cy3/Cy5
* Noise in the system
- Differential expression
- Normalization brings (appropriate) ratios back to one.

Normalization Approaches

Total Intensity

Linear Regression
Ratio statistics described by Chen, Dougherty, \& Bittner
J. Biomed. Optics (1997) 2(4) 364-374

Iterative \log (ratio) mean centering

Any of these using:
Entire Data Set
User-defined Data Set/Controls

Normalization Approaches

Entire Data Set
Probe Quantification less important
No assumption on which genes constitute "housekeeping" set
Uses all the data
No independent confirmation

User-defined Data Set/Controls

- Requires definition of "housekeeping" set or good added controls
- Requires good RNA quantitation
- Ignores much data

Normalization Approaches

Solution(?)

Experiment dependent

- Use a combination of techniques
- SMART Experimental design

Ratio Histogram

Log(ratio) Histogram

ThE MSTIIUTE FOR GENOMC RESEARCH

Normalization Approaches: Total Intensity

- Assumption: Total RNA (mass) used is same for both samples.
- So, averaged across thousands of genes, total hybridization should be the same

Normalization: $G_{k}^{\prime}=N G_{k}$ and $R_{k}^{\prime}=R_{k}$.

Normalization Approaches: Linear Regression

Assumption: Total RNA used is constant, some genes expressed with ratio of 1 , slope of best fit line normalized to 1

$$
\begin{aligned}
& R_{k}=\beta_{0}+\beta_{1} G_{k}+u_{k} \\
& S\left(\beta_{0}, \beta_{1}\right)=\sum_{k=1}^{n} i_{k}^{2}=\sum_{i, k=1}^{n}\left(R_{k}-\beta_{0}-\beta_{1} G_{k}\right)^{2}
\end{aligned}
$$

Normalization Factor:
The values of β_{0} and β_{1} that minimize $S\left(\beta_{0}, \beta_{1}\right), b_{0}$ and b_{1}, are given by

$$
b_{1}=\frac{\sum_{k=1}^{n}\left(R_{k}-\bar{R}\right)\left(G_{k}-\bar{G}\right)}{\sum_{k=1}^{n}\left(G_{k}-\bar{G}\right)^{2}} \quad \text { and } \quad b_{0}=\bar{R}-b_{1} \bar{G},
$$

$$
\text { where } \bar{R}=\frac{\sum R_{k}}{n} \quad \text { and } \quad \bar{G}=\frac{\sum G_{k}}{n} \text {. }
$$

Normalization: $G_{k}^{\prime}=\left[\frac{1}{b_{1}}\right] G_{k}$ and $R_{k}^{\prime}=R_{k}$.

Dormalization Approaches: Ratio Statistics (1)

Assumption: Total RNA used is constant, some genes expressed with

 ratio of 1 , variations are functions of the common mean$$
\sigma_{G_{k}}=c \mu_{G_{k}} \text { and } \sigma_{R_{k}}=c \mu_{R_{k}} \text {, with } \mu_{G_{k}}=\mu_{R_{k}}=\mu_{k} \text {. }
$$

Probablilty Density for Ratio $\boldsymbol{T}_{\boldsymbol{k}}: \quad f_{T_{k}}(t) \approx \frac{(1+t) \sqrt{1+t^{2}}}{c\left(1+t^{2}\right) \sqrt{2 \pi}} \exp \left[\frac{-(t-1)^{2}}{2 c\left(1+t^{2}\right)}\right]$

This density can be used to calculate the mean, standard deviation and confidence interval limits for the distribution of measured ratio values. As functions of c, these parameters can be estimated using a polynomial approximation

$$
y=a_{3} c^{3}+a_{2}{ }^{2} c^{2}+a_{1} c+a_{0}
$$

with constants are chosen appropriately:

$$
\begin{array}{ll}
\mu: & \left(a_{3}, a_{2}, a_{1}, a_{0}\right)=(0.364,1.279,-0.0427,1.001) \\
\sigma: & \left(a_{3}, a_{2}, a_{1}, a_{0}\right)=(-2.805,2.911,-2.706,0.979)
\end{array}
$$

lower limit at 95\% confidence: $\left(a_{3}, a_{2}, a_{1}, a_{0}\right)=(28.644,-2.830,3.082,0.989)$
upper limit at 95% confidence: $\left(a_{3}, a_{2}, a_{1}, a_{0}\right)=(-5.002, .4 .462,-3.496,0.9968)$

Normalization Approaches: Ratio Statistics (2)

Assume that the population mean $\mu_{0}=1$ and let the first approximation of the normalization parameter m_{1} be equal to the calculated sample A first approximation of c, \hat{c}_{1}, is calculated using

$$
\hat{c}_{i}=\left[\frac{1}{n} \sum_{j=1}^{n} \frac{\left(t_{j}-1\right)^{2}}{\left(1+t_{j}^{2}\right)}\right]^{1 / 2}
$$

where the sum is over the n elements taken initially between the one-half and twice the sample mean.
Upper and lower limits at the 95% confidence level, θ_{1} and θ_{2}, are then calculated using \hat{c}_{1} and the previous approximation.
A normalization factor \hat{m}_{1} is calculated using

$$
\hat{m}_{i}=\frac{1}{\hat{\mu}_{i-1}}\left(\frac{1}{n} \sum_{j=1}^{n} t_{j}\right),
$$

where, again, we take $\hat{\mu}_{0}=1$, the sum is over the n array elements used to estimate \hat{c}_{1}, and i is an index used to count the number of iterations
The individual ratios are then rescaled using

$$
t_{k}^{\prime}=\frac{t_{k}}{\hat{m}_{i}}=\frac{R_{k}}{\left(\hat{m}_{i} G_{k}\right)}=\frac{R_{k}^{\prime}}{G_{k}^{\prime}} .
$$

This process is then iterated until the calculated value of the mean estimator converges to a fixed value.
The upper and lower confidence limits for the normalized experimental data are then calculated as

$$
\theta_{1}^{\prime}=\hat{m} \theta_{1} \text { and } \theta_{2}^{\prime}=\hat{m} \theta_{2}
$$

and $\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right)$ are used to define the limits for identification of differentially expressed genes

Bad Data from Parts Unknown

Good Data from TREX

Log Ratio vo Intensity Plot of Slide 10 (A5 to C3) with All Values Greater than One

Normalization using local linear regression

Normalization using local linear regression

OVCAR3
01-04-01-16
Normalized

OVCAR3
Lowess correction

Normalization using local linear regression

SW480
$01-04-01-7$
Normalized

SW480
01-04-01-7 Lowess correction

SW480
Lowess correction

$\log _{2}\left(\mathbf{R}^{*} \mathbf{G}\right)$

Multiple Experiments?

Goal is identify genes (or experiments) which have "similar" patterns of expression

- This is a problem in data mining
- "Clustering Algorithms" are most widely used
- Types
- Agglomerative: Hierarchical
- Divisive: k-means, SOMs
- Others: Principal Component Analysis (PCA)
- All depend on how one measures distance

Expression Vectors

Crucial concept for understanding clustering

- Each gene is represented by a vector where coordinates are its values \log (ratio) in each experiment
- $x=\log (\text { ratio })_{\text {expt }}$
- $y=\log (\text { ratio })_{\text {expt2 }}$
- $z=\log (\text { ratio })_{\text {expiz }}$
. etc.
- For example, if we do six experiments,
* Gene $_{1}=(-1.2,-0.5,0,0.25,0.75,1.4)$
* Gene $_{2}=(0.2,-0.5,1.2,-0.25,-1.0,1.5)$
* Gene $3=(1.2,0.5,0,-0.25,-0.75,-1.4)$
* etc.

Expression Matrix

These gene expression vectors of \log (ratio) values can be used to construct an expression matrix

	$\stackrel{\rightharpoonup}{7}$	$\stackrel{N}{N}$	$\stackrel{m}{0}$	$\stackrel{+}{\stackrel{\rightharpoonup}{6}}$	$\stackrel{n}{\square}$	若
Gene_{1}	-1.2	-0.5	0	0.25	0.75	1.4
Gene_{2}	0.2	-0.5	1.2	-0.25	-1.0	1.5
Gene_{3}	1.2	0.5	0	-0.25	-0.75	-1.4

- This is often represented as a red/green colored matrix

Distance metrics

Distances are measured "between" expression vectors

- Distance metrics define the way we measure distances
- Many different ways to measure distance:
- Euclidean distance
- Pearson correlation coefficient(s)
- Manhattan distance
- Mutual information
- Kendall's Tau
* etc.
- Each has different properties and can reveal different features of the data

Distance Matrix

- Once a distance metric has been selected, the starting point for all clustering methods is a "distance matrix"

Gene $_{1}$	0	1.5	1.2	0.25	0.75	1.4
Gene $_{2}$	1.5	0	1.3	0.55	2.0	1.5
Gene $_{3}$	1.2	1.3	0	1.3	0.75	0.3
Gene $_{4}$	0.25	0.55	1.3	0	0.25	0.4
Gene $_{5}$	0.75	2.0	0.75	0.25	0	1.2
Gene $_{6}$	1.4	1.5	0.3	0.4	1.2	0

- The elements of this matrix are the pair-wise distances. Note that the matrix is symmetric about the diagonal.

Hierarchical clustering

Select the data you want to cluster
"Filter" (normalize) the data appropriately and select distance

Apply method:
Search through the distance matrix and find the two most similar clusters. This is the first true stage in the "clustering" process. If several pairs share the same similarity, use a predetermined rule to decide between alternatives.
2. Fuse the two selected clusters to produce a new cluster that now contains at least two objects.
3. Calculate the distances between this new cluster and all other clusters. There is no need to calculate all distances since only those involving the new cluster have changed.

- Repeat steps 1-3 until all objects are in one cluster.

ThE INSTIIUTE FOR GENOMC RESEARCH

k-means clustering

Select the data you want to cluster and filter; select distance

Apply method:

1. All initial objects are randomly assigned to one of k clusters (where \boldsymbol{k} is an input parameter to the algorithm).
2. An average expression vector is then calculated for each cluster and this is used to compute the distances between clusters.
Objects are moved between clusters and intra- and inter-cluster distances are measured with each move. Objects are allowed to remain in the new cluster only if they are closer to it than to their previous cluster.
3. Following each move, the expression vectors for each cluster are recalculated.
4. The shuffling proceeds until moving any more objects would make the clusters more variable.

Self Organizing Maps (SOMs)

Select the data you want to cluster and filter; select distance

Apply method:

1. Random vectors are constructed and assigned to each partition. (where the number and geometry are input parameters).
2. A gene is picked at random and using a selected distance metric, the reference vector that it is closest to the gene's is identified .
The reference vector is then adjusted so that it is more similar to the randomly picked gene's. The reference vectors that are nearby on the two dimensional grid are also adjusted so that they too are more similar to the randomly selected gene .
3. Steps 2 and 3 are iterated several thousand times, decreasing the amount by which the reference vectors are adjusted and increasing the stringency used to define closeness in each step. As the process continues, the reference vectors are converge to fixed values .
4. Finally, the genes are mapped to the relevant partitions depending on the reference vector to which they are most similar.

Principal Component Analysis (PCA)

Select the data you want to cluster and filter
Apply method:
OK, this gets a bit complicated. . . .
Basically:

1. We find the eigenvectors of the expression matrix
2. We select those with the greatest eigenvalues
3. We project our data on the eigenvectors with the three greatest eigenvalues
4. And make pretty pictures

Support Vector Machines (SVM)

- Select the data you want to cluster and filter

Apply method:
OK, this gets even more complicated. ...
Basically this is a neural network approach to finding dividing your data into genes "like" and "unlike" a training set. . . .

1. Pick a set of genes you are know about (your training set)
2. Train the SVM. This produces a pattern that can be recognized
3. Screen the data using the SVM model

TIGR MeV: Test Data Set

Gene Expression Families

Experiment Number

Hierarchical Clustering

(A) Average Linkage

(B) Complete Linkage
(C) Single Linkage

Even related algorithms produce slightly different views of the data.
(A)

Hierarchical Clustering and PCA

```
(A) Average Linkage
(B) PCA
```

Separate clusters may have more or less support when using different algorithms.

k-means Clustering

(A)

Separate clusters may have more or less support when using different algorithms.

Note colors are based on hierarchical clustering Results.
(B)

(E)

The effects on Mean Centering

Very Useful Microarray URLs

Leming Shi TIGR
MGED
Wentian Li
EBI
Terry Speed Joe Derisi
Pat Brown NCGR Stanford

HAPI
http://www.gene-chips.com http://pga.tigr.org/tools http://www.mged.org http://linkage.rockefeller.edu/wli/microarray http://industry.ebi.ac.uk/~alan/MicroArray http://stat-www.berkeley.edu/users/terry/zarray/Html http://www.microarrays.org/index.html http://cmgm.stanford.edu/pbrown/mguide/ http://www.ncgr.org/research/genex/other_tools.html http://www.dnachip.org
http://array.ucsd.edu

Acknowledgments

The TIGR Gene Index Team
Jennifer Cho
Svetlana Karamycheva
Yudan Lee
Babak Parvizi
Geo Pertea
Razvan Sultana Jennifer Tsai
John Quackenbush Joseph White

Funding provided by the Department of Energy and the National Science Foundation

Resources: http://pga.tigr.org/tools.shtml
johnq@tigr.org

TIGR Collaborators
Norman Lee
Renae Malek
Hong-Ying Wang
Truong Luu
Nnenna U. Nwokekeh

TIGR Human/Mouse/Arabidopsis
Expression Team
Emily Chen
Rence Gaspard
Jeremy Hasseman
Heenam Kim
John Quackenbush
Erik Snesrud
Shiubang Wang
Ivana Yang
Yan Yu
Baoping Zhao
Array Software Hit Team Jerry Li
John Quackenbush
Alex Saced
Vasily Sharov Alexander Sturn
Joseph White
Assistant
Mary Mulholland
Funding provided by the National Cancer Institute, the National Heart, Lung, Blood Institute, and the National Science Foundation

