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Chloroquine resistance in Plasmodium falciparum has recently
been shown to result from mutations in the novel vacuolar
transporter PfCRT. Field studies have demonstrated the
importance of these mutations in clinical resistance. Although
a pfcrt homolog has been identified in Plasmodium vivax, there
is no association between in vivo chloroquine resistance and
codon mutations in the P. vivax gene. [AU:OK?] This is
consistent with lines of evidence that suggest alternative
mechanisms of chloroquine resistance among various malaria
parasite species.
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Abbreviations
CQ chloroquine
PfCRT P. falciparum chloroquine resistance transporter

Introduction
[[AAUUQQ11::  II  hhaavvee  sshhoorrtteenneedd  tthhee  ttiittllee  sslliigghhttllyy  ttoo  mmaakkee  iitt  mmoorree
ccoonncciissee..  II  uunnddeerrssttaanndd  yyoouu  wwaanntt  ttoo  eemmpphhaassiiss  tthhee  ffaacctt  tthhaatt
tthhee  ttrraannssppoorrtteerr  ppllaayyss  aa  rroollee  iinn  CCQQ  rreessiissttaannccee  iinn  PP..  ffaallccii--
ppaarruumm  aanndd  nnoott  PP..  vviivvaaxx bbuutt  II  tthhiinnkk  tthhiiss  iiss  ccoovveerreedd  iinn  tthhee
aabbssttrraacctt  aanndd  iitt’’ss  bbeetttteerr  ttoo  ccaattcchh  tthhee  rreeaaddeerrss  aatttteennttiioonn  wwiitthh  aa
sshhoorrtteerr  ttiittllee..  IIss  tthhiiss  OOKK??]]

Malaria parasite resistance to the drug chloroquine (CQ)
poses a severe and increasing public health threat. This
inexpensive and widely consumed drug has been the main
line of attack against the parasite, and its increasing failure
accompanies a return of malaria-related morbidity and
mortality levels not seen for decades [1•]. The problem is
most acute in Plasmodium falciparum malaria, the species
responsible for the most severe form of the disease. The
emergence of CQ-resistant P. vivax, a species that causes

75–90 million cases of non-fatal malaria annually [2•], has
recently become an area of increasing concern. 

Here, we review recent progress in deciphering CQ resis-
tance in malaria parasites. These developments include
the identification of mutations in a vacuolar transporter as
the basis for CQ resistance in P. falciparum and the finding
of absolute selection of these mutations in clinical cases of
CQ treatment failure. These results are generating new
hypotheses on the molecular mechanism of CQ resistance.
Investigations into CQ resistance in other malaria parasites
also provide evidence that mechanisms of resistance differ
among Plasmodium species. 

Three distinct evolutionary clades of malaria
parasites
Malaria parasites are classified in the phylum
Apicomplexa, a large protist group consisting of almost
5000 species. All apicomplexans are parasites and contain
an organellar structure, the apical complex, involved in
host cell invasion. Within the phylum, the genus
Plasmodium includes ~200 known malaria species that par-
asitize birds, reptiles, and mammals. The genus divides
into three distinct and highly divergent evolutionary clades
[3,4]: the first includes P. falciparum and a closely related
parasite of apes, P. reichenowi; the second clade consists of
P. vivax and monkey malaria species including P. knowlesi;
and finally, the third clade includes rodent malaria species
such as P. berghei and P. chabaudi. [[AAUU::OOKK??]] Major differ-
ences in host specificity and disease manifestation occur
among species of these clades, as do wide variations in
genome composition and codon usage [5,6]. Because of the
difficulties of working with P. falciparum in the laboratory,
there has been support for the use of many of these relat-
ed species as models, for example, in studies of host cell
invasion [7], malaria vaccine development [8], and anti-
malarial drug resistance (reviewed in [9•]).

The mechanism of chloroquine action
In human erythrocytes, P. falciparum supports its growth by
taking up host cell cytoplasm in an acidic digestive food
vacuole [10]. Toxic heme, in its hematin (µ-oxodimer)
[[AAUU::OOKK??]]  form, is released in the vacuole by hemoglobin
digestion and crystallized into innocuous hemozoin, or
malaria pigment. CQ is proposed to interfere with this
process by complexing with hematin [11,12], thereby cre-
ating toxic complexes that cause parasite death. The actual
mechanism of toxicity [[AAUUQQ22::  IIss  tthhiiss  ttooxxiicciittyy  ooff  hheemmaattiinn  oorr
tthhee  CCQQ——hheemmaattiinn  ccoommpplleexx??  OOrr  bbootthh??]]  is still subject to
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debate, but hematin can increase membrane permeability
leading to cell lysis [13] and is known to inhibit parasite
enzymes [14]. Recent studies on the crystal structure of β-
hematin, a synthetic analog of malaria pigment, indicate
that CQ is ‘chemiabsorbed’ onto hemozoin, capping crys-
tal growth that is required for hematin sequestration [15••].
[[AAUUQQ33::  PPlleeaassee  ccllaarriiffyy::  aaccccoorrddiinngg  ttoo  tthhiiss  mmooddeell,,  CCQQ  ddooeessnn’’tt
ffoorrmm  aa  ccoommpplleexx  wwiitthh  hheemmaattiinn  bbuutt  wwiitthh  hheemmoozzooiinn,,  tthheerreebbyy
pprreevveennttiinngg  bbiinnddiinngg//ccrryyssttaalllliizzaattiioonn  ooff  hheemmaattiinn  ttoo  hheemmoo--
zzooiinn??]]

The physiologic basis of chloroquine resistance
A consistent characteristic of CQ-resistant P. falciparum
parasites in vitro is their reduced accumulation of CQ in
the digestive vacuole relative to accumulation of the drug
in CQ-sensitive parasites [16–18]. Another characteristic of
CQ-resistant parasites is their chemosensitization to CQ by
structurally diverse agents that include verapamil, a Ca2+

channel blocker [19]. [[AAUUQQ44::  DDooeess  tthhiiss  mmeeaann  tthhaatt  tthheeyy
bbeeccaammee  sseennssiittiivvee  ttoo  CCQQ  aafftteerr  eexxppoossuurree  ttoo  vveerraappaammiill??]]
Proposals to explain these features of resistant parasites
have included alterations in the intraerythrocytic parasite
that affect CQ uptake or efflux at the cytoplasmic mem-
brane, or change H+ or CQ concentration in the digestive
vacuole [17,20–22,23••,24]. 

Identification of the genetic determinant of
chloroquine resistance in P. falciparum
To investigate the genetic basis of P. falciparum CQ resis-
tance, Wellems et al. [25] established a genetic cross
between a CQ-sensitive clone, HB3 from Honduras, and a
CQ-resistant clone, Dd2 from Indochina. Linkage analysis
of 16 independent progeny showed that the verapamil-
reversible CQ-resistant phenotype segregated as a single
Mendelian trait that mapped to chromosome 7 [26].
Examination of further progeny localized this CQ resis-
tance determinant to a 36 kb segment on the chromosome
[27]. A gene (cg2) initially identified as a probable CQ
resistance candidate was ruled out by allelic-exchange
studies [28•]. 

Recently, Fidock et al. [29••] identified the pfcrt (P. falci-
parum chloroquine resistance transporter) gene near cg2 in
the 36 kb segment. In the CQ-resistant Dd2 parent, eight
point mutations (M74→I, N75→E, K76→T, A220→S,
Q271→E, N326→S, I356→T, and R371→I) were found in
the predicted protein sequence (PfCRT) encoded by the
pfcrt gene. Seven of these eight mutations were detected
in 15 CQ-resistant parasite strains collected from diverse
regions of Asia and Africa (the remaining mutation
I356→T was detected in some strains). CQ-resistant
strains from South America were found to harbor distinct
sets of PfCRT mutations but shared the K76→T and
A220→S mutations in common with the Asian and African
strains. These findings suggested that PfCRT mutations
arose separately in association with CQ resistance in South
America and Asia/Africa, a result consistent with the inde-
pendent genesis of CQ resistance in these regions [30]. 

[[AAUU::  NNeeww  ppaarraaggrraapphh  OOKK??]] Of the 15 CQ-sensitive lines
tested, [[AAUU::  WWhhaatt  ssttrraaiinnss  aarree  bbeeiinngg  rreeffeerrrreedd  ttoo  hheerree??  AArree
tthheeyy  ffrroomm  tthhee  oorriiggiinnaall  ggeenneettiicc  ccrroossss  ((rreeff  2255,,  2266))  oorr  aarree  tthheeyy
cclliinniiccaall  ssttrraaiinnss  ffrroomm  aarroouunndd  tthhee  wwoorrlldd  ((rreeff  2299))??]] all but one
carried the pfcrt sequence of the CQ-sensitive HB3 parent.
The one exception, 106/1, was found to encode all of the
PfCRT mutations associated with CQ resistance except
the amino acid mutation at position 76, supporting a cen-
tral role for this residue in CQ resistance. Episomal
transformation of 106/1 and two additional CQ-sensitive
strains with constructs expressing pfcrt from CQ-resistant
parasites resulted in transformed lines that grew at CQ
concentrations tolerated only by naturally CQ-resistant
strains. Stepwise CQ pressure on the transformed 106/1
parasites ultimately resulted in loss of the transfected
DNA and selection of a highly CQ-resistant line that had
undergone a single K76→I point mutation, providing addi-
tional evidence for the central role of position 76 in CQ
resistance [29••].

The K76→T mutation has not been observed in the
absence of mutations at other positions in PfCRT,
although the reverse situation has been documented (i.e.
mutations at other positions can occur without the pres-
ence of K76→T, as in the 106/1 line). It is plausible that
mutations at other positions are required to maintain criti-
cal functional properties of the molecule in the presence of
the K76→T change. The mutation A220→S may fulfill a
particular requirement in this regard, since this mutation
has consistently been found to accompany K76→T in CQ-
resistant parasites from the different New World and Old
World foci. The suggestion that K76→T cannot occur in
the absence of other PfCRT point mutations may also
explain the slow genesis of CQ resistance in the field as
well as the difficulties that have been experienced with
attempts to select CQ resistance in the laboratory. Indeed,
the CQ-resistant line containing the K76→I point muta-
tion reported by Fidock et al. [29••] was obtained from the
CQ-sensitive 106/1 line that already contained six PfCRT
mutations at other positions seen [[AAUU::OOKK??]] in Southeast
Asian and African parasites. 

Characterization of the protein product of pfcrt
The protein product of pfcrt, PfCRT, belongs to a previ-
ously uncharacterized family of putative transporters, with
10 transmembrane segments (Figure 1) but few other rec-
ognizable features [31••]. Localization studies place it at
the membrane of the parasite’s digestive vacuole [29••].
Moreover, PfCRT mutations are associated with a decrease
(acidification) in the pH of the digestive vacuole of CQ-
resistant parasites by some 0.3–0.5 units compared with
the pH of the digestive vacuole of CQ-sensitive parasites
[29••]. This result might appear paradoxical given that vac-
uolar acidification predicts increased CQ accumulation in
the digestive vacuole on the basis of Henderson-
Hasselbach equilibrium [18,32], whereas CQ-resistant
parasites are known to exhibit reduced CQ accumulation.
CQ accumulation in the digestive vacuole, however, is dri-

2 Host–microbe interactions: parasites
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ven to a large extent by binding of CQ to hematin [[AAUUQQ55::
SSeeee  AAUUQQ33]] [17,22], and recent data have shown a steep
pH-dependence in the conversion of soluble hematin-
receptor [[AAUUQQ66::  WWhhaatt  iiss  tthhiiss  rreecceeppttoorr??]]  to hemozoin
[12,23••]. These results have suggested a model whereby
alterations in PfCRT could cause increased acidification of
the digestive vacuole, resulting in reduced levels of acces-
sible hematin with a consequent reduction in
CQ—hematin complexes [[AAUUQQ77::  SSeeee  AAUUQQ33]]  and toxicity. 

The above theory is, however, difficult to reconcile with
the reported effectiveness of CQ analogs with substituted
or shortened side chains against CQ-resistant parasites
[33–36]. Such findings support a second theory: that
PfCRT mutations alter CQ flux across the digestive vac-
uole membrane. The predicted structure of PfCRT places
amino acid substitutions K76→T and K76→I within a
transmembrane region that may be involved in transport of
diprotic [[AAUUQQ88::  WWhhaatt  ddooeess  ““ddiipprroottiicc””  mmeeaann??]]  CQ or
another charged substance. Both of these changes involve
loss of a positive charge at position 76 in the molecule.

PfCRT mutations and their association with
failure of chloroquine treatment 
Recent results from a CQ efficacy trial in Mali found strong
evidence that mutations in PfCRT were critical for CQ
resistance in vivo [37••]. In this trial, CQ treatment
responses were followed in 469 cases of uncomplicated fal-
ciparum malaria. CQ failed to treat 14% of these cases.
[[AAUU::OOKK??]] In every case of treatment failure, the K76→T
mutation, in concert with other PfCRT mutations, was
exclusively present in the post-treatment infection. This
compared with a baseline prevalence of 41% of infections
carrying the K76→T mutation in a random sample of 116
patients, [[AAUUQQ99::  WWeerree  tthheessee  ppaattiieennttss  ffrroomm  tthhee  CCQQ  eeffffiiccaa--
ccyy  ttrraaiill??]] demonstrating absolute selection for this

mutation in vivo by CQ treatment. [[AAUUQQ1100::  II  ddoonn’’tt  uunnddeerr--
ssttaanndd  wwhhyy  tthhiiss  ddeemmoonnssttrraatteess  aa  sseelleeccttiioonn  ffoorr  tthhee  KK7766→→TT
mmuuttaattiioonn  bbyy  CCQQ  ttrreeaattmmeenntt..  4411%%  ooff  tthhee  iinnffeeccttiioonnss  hhaadd  tthhee
KK7766→→TT  mmuuttaattiioonn  ((ii..ee..  CCQQ  rreessiissttaanntt))  yyeett  oonnllyy  1144%%  ooff  tthhee
iinnffeeccttiioonnss  wweerree  nnoott  ssuucccceessssffuullllyy  ttrreeaatteedd  wwiitthh  CCQQ..  IIss  tthhee
ttaakkee  hhoommee  mmeessssaaggee  tthhee  ffaacctt  tthhaatt  110000%%  ooff  tthheessee  ffaaiilleedd  ttrreeaatt--
mmeennttss  hhaadd  tthhee  mmuuttaattiioonn??]]  The presence of K76→T at the
time of treatment was strongly associated with subsequent
failure of CQ treatment [37••]. Moreover, the ability of
individuals [[AAUU::OOKK??]] to clear infections carrying the
K76→T mutation in this highly endemic area was strongly
associated with increasing age. These data suggest that
immunity against P. falciparum acquired with age con-
tributed to successful treatment outcomes of some
individuals harboring parasites with the K76→T mutation
(Figure 2). 

[[AAUUQQ1111::  NNeeww  ppaarraaggrraapphh  OOKK??]]  Although it is possible that
parasite genetic factors other than pfcrt may modulate
in vitro or in vivo levels of CQ resistance and that host fac-
tors other than acquired immunity may affect the clearance
of CQ-resistant parasites, such factors have yet to be clear-
ly demonstrated and understood in the context of
treatment failures. The identification of PfCRT K76→T
mutation as a key molecular marker of CQ resistance offers
new opportunities for diagnosis and public health surveil-
lance of P. falciparum infections.

Effects of pfmdr1 and other secondary genes
on chloroquine resistance levels
Although the association of pfcrt alleles with CQ resistance
in vitro and in vivo is evident, the roles of other genes, such
as the multidrug resistance gene pfmdr1 [38,39], are less
clear. Impetus for the isolation of pfmdr1 came from the
finding that verapamil, which inhibits P-glycoprotein
mediated multidrug resistance in mammalian tumor cells,

A novel vacuolar transporter in Plasmodium species Carlton et al. 3

Figure 1

The schematic structure of the protein
product of the pfcrt gene, PfCRT, showing the
ten predicted transmembrane domains. The
positions of the mutations identified from the
analysis of over forty geographically diverse
isolates are indicated by filled circles.
[AUQ17: In the text it says there are eight
point mutations but there are ten shown
here. Please clarify.] The K (lysine) to T
(threonine) change at position 76 (indicated
by the arrow) is critical to CQ resistance in
P. falciparum.

K76T

NH2
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also chemosensitized CQ-resistant P. falciparum strains
[19]. The pfmdr1gene encodes an ATP-dependent trans-
membrane protein, Pgh-1, that has also been localized to
the parasite’s digestive vacuole [40]. Evidence from differ-
ent studies has sometimes shown associations between CQ
resistance and pfmdr1 copy number [38] or mutations [41],
most notably at position 86 in the protein where mutation
of an asparagine residue to tyrosine has frequently been
documented (N86→Y; ‘K1 allele’); however, many excep-
tions to these associations have been established both from
a genetic cross [25] and from field surveys (reviewed in
[42•]). 

Concomitant with mutant pfcrt selection in clinical cases of
malaria, Djimdé et al. [37••] found an increase of the Pgh-1
N86→Y mutation from a baseline prevalence of 50% to a
prevalence of 86% in cases of CQ treatment failure. A total
of 30% of infections from the treatment failure group car-
ried the wild-type Pgh-1 N86 (16% as mixed parasite
populations with the N86 and Y86 codons). Furthermore,
the presence of parasites with the mutant N86→Y in addi-
tion to the PfCRT K76→T mutation did not increase the
relative risk of treatment failure when compared with
infections carrying only the PfCRT K76→T mutation
before treatment. Prediction of CQ susceptibility in clini-
cal cases of malaria was therefore not possible through
monitoring of pfmdr1 genetic alterations. 

[[AAUUQQ1122::  NNeeww  ppaarraaggrraapphh  OOKK??]]  Interestingly, recent allelic-
exchange data showed that, although pfmdr1 mutations
could not confer resistance to CQ-sensitive parasites,
removal of three pfmdr1 mutations S1034→C, N1042→D,
and D1246→Y from a CQ-resistant parasite modified the
in vitro measures of resistance [43••]. Mutations in pfmdr1,
and in other as yet undefined modulator genes, may thus
represent secondary adaptations that enhance parasite fit-
ness in the presence of pfcrt mutations. Such adaptations
would be analogous to the compensatory alterations pro-
duced in response to acquisition of central resistance
determinants shown in other microbial systems [44,45•].

Evidence for another chloroquine resistance
mechanism in P. vivax
Since its introduction, CQ has been the drug of choice for
eliminating not only P. falciparum blood-stage parasites but
also infections caused by the three other human parasites
P. ovale, P. malariae and P. vivax. To date, no reports of CQ-
resistant P. ovale and P. malariae have been confirmed [46].
CQ-resistant P. vivax, however, was first reported from
Papua New Guinea in 1989 [47] and since then has been
an increasing problem in other countries.

To investigate whether similar mechanisms of CQ resis-
tance exist in P. falciparum and P. vivax, pfcrt homologs
were identified in P. vivax, as well as in other Plasmodium
species, and assessed for possible relationship with CQ
resistance. Results from this study showed that pfcrt has
highly conserved homologs in all of the Plasmodium clades
[31••]. Homologs of pfcrt from P. vivax, P. knowlesi and
P. berghei were sequenced, revealing the gene family to be
highly conserved in composition and structure across all
three lineages. Regions of the orthologous P. vivax gene,
pvcg10, were sequenced from 20 geographically distinct
laboratory lines and field isolates of P. vivax. No association
between codon mutations in pvcg10 and in vivo CQ
response could be demonstrated, indicating that the mole-
cular events underlying CQ resistance in P. vivax differ
from those in P. falciparum [31••].

In this light, it is useful to consider laboratory models of
malaria and ask what information they may provide of rel-
evance to the mechanisms of CQ resistance in human
malaria species. Although little can be said with regard to
P. vivax at this point, available data suggest that mecha-
nisms of CQ resistance in the rodent malaria parasites,
P. chabaudi and P. berghei [[AAUU::OOKK??]], have notable differ-
ences from the mechanism in P. falciparum. CQ-resistant
lines of P. chabaudi have been selected with relative ease in
the laboratory [48], in contrast to the difficulties in obtain-
ing CQ-resistant P. falciparum lines [49]. Quantitative trait
mapping of progeny from crosses between CQ-resistant
and CQ-sensitive P. chabaudi clones produced evidence for
a combined role of several genes on different chromo-
somes in conferring CQ resistance [50], unlike the major
genetic locus identified in P. falciparum [26,27]. An unsta-
ble form of CQ resistance in P. berghei has been associated
with reduced malaria pigment formation [51], whereas
there are no obvious differences in the quantity of hemo-
zoin in CQ-resistant and CQ-sensitive P. falciparum [52].

The fact that mechanisms of CQ resistance among differ-
ent Plasmodium species can vary has several implications.
Clearly, results from one species and studies that utilize
laboratory models of malaria should be extrapolated with
care. In particular, similarity between Plasmodium species
in terms of conserved molecular mechanisms of drug
response and resistance may depend on the class of anti-
malarial. For example, in contrast to CQ resistance, the
molecular basis for pyrimethamine resistance, where a sin-

4 Host–microbe interactions: parasites

Figure 2

Depiction of the factors that contribute to the failure of chloroquine
treatment (clinical resistance) in uncomplicated P. falciparum malaria.
Mutations in pfcrt confer the CQ resistance (CQR) phenotype to
P. falciparum malaria parasites. In the presence of these mutations,
immune status is a critical factor in therapeutic outcome.
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gle point mutation in the drug target dihydrofolate-reduc-
tase (dhfr) can render the parasite resistant, appears to be
a common mechanism in many malaria species ([9•,53] and
references therein). Development of similar or divergent
mechanisms of drug resistance among species may be
influenced by the nature of the drug target, for example a
readily mutable target such as dhfr as opposed to an
immutable target like hematin. 

Conclusions and prospects for antimalarial
drug design
How will understanding the molecular mechanism of CQ
resistance help in the design of future effective antimalar-
ial drugs? The CQ-resistance mechanism mediated by
PfCRT appears to have a significant component of struc-
tural specificity because it is less effective against CQ
analogs and other classes of molecules that act on malaria
parasites through hematin-related toxicity. Structurally
related 4-aminoquinolines and other hematin-targeting
drugs may therefore provide promising avenues for the
development of new antimalarials active against CQ-resis-
tant strains of P. falciparum. 

And what of CQ action and resistance in P. vivax malaria?
The action of CQ on hematin is likely to be similar in
P. vivax, P. falciparum, and other species of malaria.
Mechanisms of resistance, however, need not be geneti-
cally similar. In evolutionary terms, it may be hypothesized
that P. vivax and P. falciparum began with different sets of
genetic polymorphisms and produced alternative solutions
to CQ toxicity. Characterization and comparison of the dif-
ferent determinants of CQ resistance in P. falciparum and
P. vivax will provide valuable information for the future
chemotherapy of malaria. 
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